Ускоритель частиц где находится


Ускоритель заряженных частиц — Википедия

Вид на ускорительный центр Fermilab, США. Тэватрон (кольцо на заднем плане) и кольцо-инжектор

Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство[источник не указан 58 дней]. К примеру, Большой адронный коллайдер в ЦЕРН представляет собой кольцо длиной почти 27 километров.

В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Конструктивно ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

Схема устройства линейного ускорителя частиц

Линейные ускорители[править | править код]

Высоковольтный ускоритель (ускоритель прямого действия)[править | править код]

Идеологически наиболее простой линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды. Ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Важное преимущество высоковольтного ускорителя по сравнению с другими типами ускорителей — возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95 %) и возможностью создания сравнительно простых установок большой мощности (500 кВт и выше), что весьма важно при использовании ускорителей в промышленных целях.

Высоковольтные ускорители можно разделить на четыре группы по типу генераторов, создающих высокое напряжение:

  • Ускоритель Ван де Граафа. Ускоряющее напряжение создаётся генератором Ван де Граафа, основанном на механическом переносе зарядов диэлектрической лентой. В современных модификациях (пеллетронах) лента заменена цепью. Максимальные электрические напряжения ~20 МВ определяют максимальную энергию частиц ~20 МэВ.
  • Каскадный ускоритель. Ускоряющее напряжение создаётся каскадным генератором (например, генератором Кокрофта-Уолтона, который создаёт постоянное ускоряющее высокое напряжение ~5 МВ, преобразуя низкое переменное напряжение по схеме диодного умножителя.)
  • Трансформаторный ускоритель. Высокое переменное напряжение создаёт высоковольтный трансформатор, а пучок проходит в нужной фазе вблизи максимума электрического поля.
  • Импульсный ускоритель. Высокое напряжение создаётся импульсным трансформатором при разряде большого количества конденсаторов.
Линейный индукционный ускоритель[править | править код]

Ускорение в таком типе машин происходит вихревым электрическим полем, которое создают ферромагнитные кольца с обмотками, установленные вдоль оси пучка.

Линейный резонансный ускоритель[править | править код]

Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускорение происходит электрическим полем высокочастотных резонаторов. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени энергии частиц.

Циклические ускорители[править | править код]

Бетатрон[править | править код]

Циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20 кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10—100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Впервые бетатрон был разработан и создан Видероэ в 1928 году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в 1940—1941 годах в США.

Циклотрон[править | править код]
Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка

В циклотроне частицы инжектируются вблизи центра магнита с однородным полем с небольшой начальной скоростью. Далее, частицы вращаются в магнитном поле по окружности внутри двух полых электродов, т. н. дуантов, к которым приложено переменное электрическое напряжение. Частица ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем. Понятно, что с увеличением энергии радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы магнита.

Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1930 году Лоуренсом и Ливингстоном, за что первому была присуждена Нобелевская премия в 1939 году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50 МэВ/нуклон.

Микротрон[править | править код]

Он же — ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.

FFAG[править | править код]
Основная статья: FFAG

Ускоритель с постоянным (как в циклотроне), но неоднородным полем, и переменной частотой ускоряющего поля.

Фазотрон (синхроциклотрон)[править | править код]

Принципиальное отличие от циклотрона — изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600—700 МэВ.

Синхрофазотрон[править | править код]

Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля.

Синхротрон[править | править код]

Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полем.

Ускоритель-рекуператор[править | править код]

По существу — это линак, но пучок после использования не сбрасывается, а направляется в ускоряющую структуру в «неправильной» фазе и замедляется, отдавая обратно энергию. Кроме того, бывают многопроходные ускорители-рекуператоры, где пучок, по принципу микротрона, совершает несколько проходов через ускоряющую структуру (возможно — по разным дорожкам), сперва набирая энергию, потом её возвращая.

Лазер на свободных электронах[править | править код]

Специализированный источник когерентного рентгеновского излучения.

Коллайдер[править | править код]

Ускоритель на встречных пучках. Чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.

  • Ананьев Л. М., Воробьёв А. А., Горбунов В. И. Индукционный ускоритель электронов — бетатрон. Госатомиздат, 1961.
  • Коломенский Д. Д., Лебедев А. Н. Теория циклических ускорителей. М.: Физматгиз, 1962.
  • A.Chao, M.Tigner, Handbook of Accelerator Physics and Engineering, 1999.
  • Бабат Г. И. Ускорители. — [М.]: Мол. гвардия, 1957. — 80 с. — 50 000 экз.
  • Ратнер, Б. С. Ускорители заряженных частиц. — М.: Наука, 1966. — 151 с.
  • Комар, Е. Г. Ускорители заряженных частиц. — М.: Атомиздат, 1964. — 388 с.
  • Ливингстон, М. Стенли. Ускорители. Установки для получения заряженных частиц больших энергий. — М.: Изд-во иностр. лит., 1956. — 148 с.
  • Быстров Ю. А., Иванов С. А. Ускорительная техника и рентгеновские приборы. — М.: Высшая школа, 1983. — 288 с.

Список ускорителей частиц — Википедия

Материал из Википедии — свободной энциклопедии

Список ускорителей, используемых в физике элементарных частиц.

Циклотроны[править | править код]

Ускоритель Месторасположение Годы
работы
Форма Сталкиваемые частицы Кинетическая
Энергия
Примечание
23 cm Циклотрон Калифорнийский университет 1931 Кольцевая H2+ 1.0 MeV Proof of concept
28 cm cyclotron Беркли 1932 Кольцевая Протон 1.2 MeV
68 cm Циклотрон University of California, Berkeley 1932—1936 Кольцевая Дейтерий 4.8 MeV Исследование водородного взаимодействия
94 cm циклотрон Калифорнийский университет 1937—1938 Кольцевой Дейтерий 8 MeV Открытие изотопов
152 cm циклотрон Калифорнийский университет, Беркли 1939 — Кольцевая Тритий 16 MeV Discovered many isotopes
467 cm cyclotron Berkeley Rad Lab[1] 1942- Кольцевая Различные >100 MeV Исследование разделения урановых изотопов
Calutrons Национальная лаборатория Оук-Ридж 1943- «Horseshoe» Ядро урана Манхэттенский проект
95-inch cyclotron Гарвард 1949-2002 Кольцевая Протон 160 MeV Использовался в ядерной физике, затем в клинической терапии

[1] Первый ускоритель построен Лоуренсом Беркли.

Другие ранние типы ускорителей[править | править код]

Синхротроны[править | править код]

Ускоритель Месторасположение Годы
работы
Форма и размер Сталкивающиеся
частицы
Кинетическая энергия Записи Примечания
Космотрон Брукхейвенская национальная лаборатория 1953—1968 Кольцевой круг
(72 метра)
Протон 3.3 GeV Появление мезонов.
Бирмингемский синхротрон Бирмингемский университет 1953—1967 Протон 1 GeV
Беватрон Berkeley Rad Lab i.e. LBNL 1954-~1970 «Race track» Протон 6.2 GeV Антипротоны
Беркли ~1970—1993 Линейный ускоритель стабильные ядра .
Сатурн Саклу, Франция 3 GeV
Синхрофазотрон Дубна, Россия Декабрь 1957—2003 Круг ⌀60 м Протон 10 GeV
Zero Gradient
Synchrotron
Argonne National
Laboratory
1963—1979 12.5 GeV
Proton Synchrotron ЦЕРН 1959 — н. в. Кольцевой круг Протон 28 GeV Используется БАК
У-70 ИФВЭ 1967 — н. в. Кольцевой, длина окружности 1.5 км Протон, ядра углерода 70 GeV крупнейший в России
Proton Synchrotron Booster ЦЕРН 1972 — н. в. Кольцевой синхрофазотрон заряженные частицы 1.4 GeV
SPS ЦЕРН 1980 — н. в. Кольцевой синхрофазотрон Заряженные частицы 480 GeV Компас, OPERA и ICARUS
Alternating Gradient Synchrotron Брукхейвенская национальная лаборатория 1960- Кольцевой протон, дейтерий, тритий, медь 33 GeV J/ψ, мюонное нейтрино, CP-нарушение в каонs, injects heavy ions and polarized protons into RHIC

More modern accelerators that were also run in fixed target mode; often, they will also have been run as colliders, or accelerated particles for use in subsequently built colliders.

Высокоинтенсивные ускорители[править | править код]

Ускоритель Месторасположение Годы
работы
Форма и размер Сталкиваемые частицы Кинетическая энергия Примечание
Протонный ускоритель Лос-Аламос 1972 — н. в. Линейный (800 m)
и
Кольцевой (30 m)
Протоны 800 MeV Нейтроны и протоны
PSI, HIPA High Intensity 590 MeV Proton Accelerator Швейцария 1974 — н. в. 0.8 Mev CW, 72 MeV Injector 2,

590 MeV Ringcyclotron

Протоны 590 MeV, 2.4 mA, =1.4 MW
TRIUMF циклотрон TRIUMF,Ванкувер 1974 — н. в. Кольцевой H- ion 500 MeV
ISIS neutron source Оксфорд 1984 — н. в. Протонные 800 MeV самый энергетический импульсный ускоритель протонов в мире
Spallation Neutron Source Национальная лаборатория Оук-Ридж 2006 — н. в. Линейный (335 m)
и
Кольцевой (248 m)
Протоны 800 MeV —
1 GeV

Низкоинтенсивные ускорители[править | править код]

Ускоритель Месторасположение Годы
работы
Форма
и место
Сталкиваемые
частицы
Кинетическая
Энергия
Эксперименты Записи
Антипротонный ускоритель ЦЕРН 1980—1996 Design study
Антипротонный ускоритель ЦЕРН 1986—1996 Антипротоны Design study
ЦЕРН 2000 — н. в. Кольцо Протоны и Антипротоны 26 GeV ATHENA, ATRAP, ASACUSA, ACE, ALPHA, AEGIS Design study
Низкоэнергетическое антипротонное кольцо ЦЕРН 1982—1996 Антипротоны PS210 Design study
Кембриджский Гарвард 1962—1974[1] 236 ft diameter synchrotron[2] Electrons 6 GeV [1]
SLAC Linac 1966 — н. в. Электроны 50 GeV
Фермилаб Фермилаб 1970 — н. в. Кольцевой синхрофазотрон Протоны 8 GeV MiniBooNE
Фермилаб Фермилаб 1995 — н. в. Кольцевой синхрофазотрон Протоны и антипротоны 150 GeV MINOS
Фермилаб-3 Фермилаб 1970—1995 Кольцевой синхрофазотрон Протоны и антипротоны 400 GeV (until 1979), 150 GeV thereafter
Bates Linear Accelerator Миддлтон 1967—2005 1 GeV
Thomas Jefferson National Accelerator Facility 1995 — н. в. 6 GeV 6 GeV DVCS, PrimEx II, Qweak First large-scale deployment of superconducting RF technology.
ELSA Германия 1987 — н. в. синхрофазотрон электроны 3.5 GeV Crystal Barrel
Микротрон Германия 1.5 GeV электроны
Теватрон 1983—2011 Протоны 980 GeV
(UNILAC) Германия 1974 — н. в. Линейный Заряженные частицы
Schwerionensynchrotron (SIS18) Германия 1990 — н. в. Synchrotron with 271 m circumference U: 50—1000 MeV/u
Ne: 50-2000 MeV/u
p: 4,5 GeV
ALBA CELLS[3]
Cerdanyola del Vallès, Catalonia, Spain
2010 — н. в. 3 GeV Материаловедение, микроскопия, кристаллография

Электрон-позитронные коллайдеры[править | править код]

Ускоритель Месторасположение Годы
работы
Форма
Электронная
энергия
Позитронная
энергия
Эксперименты Важнейшие открытия
AdA Италия- Франция 1961—1964 Кольцевой, 3 метра 250 MeV 250 MeV Эффект Тушека
CBX Стэнфорд 1962—1967 2 кольца, 12 m 300 MeV 300 MeV ee interactions
VEP-1 (ee) Новосибирск 1964—1968 2 кольца 130 MeV 130 MeV ee scattering; QED radiative effects confirmed
VEPP-2 Новосибирск 1965—1974 Кольцевой, 11.5 m 700 MeV 700 MeV OLYA, CMD multihadron production (1966), e+e→φ (1966), e+e→γγ (1971)
SPEAR SLAC 1972—1990(?) Mark Discovery of Charmonium states
VEPP-2M Новосибирск 1974-2000 Кольцевой, 17.88 m 700 MeV 700 MeV ND, SND, CMD-2 e+e cross sections, radiative decays of ρ, ω, and φ mesons
DORIS DESY 1974—1993 Кольцевой, 300m 5 GeV 5 GeV ARGUS, Crystal Ball, DASP, PLUTO Осциляция
PETRA DESY 1978—1986 Кольцевой, 2 km 20 GeV 20 GeV JADE, MARK-J, PLUTO, TASSO Открытие глюона в трёх событиях
CESR Корнеллский университет 1979-2002 Кольцевой, 768m 6 GeV 6 GeV
SLAC 1980—1990(?) Mark II
SLC 1988—1998(?) 45 GeV 45 GeV SLD, Mark II First linear collider
Большой электрон-позитронный коллайдер ЦЕРН 1989-2000 Кольцевой, 27 km 104 GeV 104 GeV Aleph, Delphi, Opal, L3
BEPC Китай 1989-2004 Кольцевой, 240m 2.2 GeV 2.2 GeV Beijing Spectrometer (I and II)
VEPP-4M Новосибирск 1994- Кольцевой, 366m 6.0 GeV 6.0 GeV KEDR (недоступная ссылка)
SLAC 1998-2008 кольцевой, 2.2 km 9 GeV 3.1 GeV
KEK 1999-2009 Кольцевой, 3 km 8.0 GeV 3.5 GeV
DAFNE Италия 1999- Кольцевой, 98m 0.7 GeV 0.7 GeV KLOE Crab-waist collisions (2007)
2002-2008 Кольцевой, 768m 6 GeV 6 GeV CHESS, CLEO-c
VEPP-2000 Новосибирск 2006- Кольцевой, 24.4m 1.0 GeV 1.0 GeV SND, CMD-3
Пекинский-2 Китай 2008- Кольцевой, 240m 3.7 GeV 3.7 GeV Beijing Spectrometer III
VEPP-5 Новосибирск 2015

Адронные коллайдеры[править | править код]

Ускоритель Месторасположение Годы
работы
Форма
и размер
Сталкивающееся
частицы
Энергия пучка
Эксперименты
ISR ЦЕРН 1971—1984 Кольцевой круг
(948 м диаметр)
Протон/
Протон
31.5 GeV
Протонный суперсинхротрон (SppS) CERN 1981—1984 Кольцевой круг
(6.9 km в диаметре)
Протон/
Антипротон
270-315 GeV UA1, UA2
Тэватрон run-1 1992—1995 Кольцевой круг
(6.3 km окружности)
Протон/
Антипротон
900 GeV CDF, D0
Тэватрон run-2 Фермилаб 2001-2011 Кольцевой круг
(6.3 km окружности)
Протон/
Антипротон
980 GeV CDF, D0
RHIC Брукхейвен 2001 — н. в. Шестиугольные кольца
(3.8 km окружности)
Протон/
Протон
PHENIX, STAR
RHIC Брукхевен 2000 — н. в. Треугольные кольца
(3.8 km circumference)
d-197
Au79+;
63
Cu29+-63
Cu29+;
197
Au79+-197
Au79+
4.6-100 GeV
per nucleon
STAR, PHENIX, Brahms, Phobos
LHC
proton mode
ЦЕРН 2008 — н. в. Кольцевой круг
(27 km окружности)
Протон/
Протон
4 TeV
(design: 7 TeV)
ALICE, ATLAS, CMS, LHCb, LHCf, TOTEM
LHC
ion mode
ЦЕРН 2008 — н. в. Кольцевой круг
(27 km circumference)
208
Pb82+-208
Pb82+
2.76 TeV
per nucleon
ALICE, ATLAS, CMS, LHCb

Электрон-протонные коллайдеры[править | править код]

Ускоритель Месторасположение Годы
работы
Форма
и размер
Энергия электронов Энергия протонов Эксперименты
HERA DESY 1992-2007 Кольцо (окружность — 6336 м) 27.5 GeV 920 GeV h2, ZEUS, HERMES, HERA-B

Что такое ускоритель частиц? Как это работает?

Ускоритель частиц-это устройство, которое ускоряет субатомные частицы до высоких скоростей, используя электромагнитные поля. Он генерирует пучок заряженных частиц, который используется в многочисленных исследовательских целях.

История ускорителя частиц восходит к 1930 году, когда ученые разработали трансформатор на 200 000 вольт и ускоряли протоны по прямой траектории. Хотя машина не выполнила свое предназначение, она начала поиски ускорителей частиц более высокой энергии, которые продолжаются и по сей день.

Ускоритель частиц - это большое устройство, которое продвигает субатомные частицы на высоких скоростях, используя электрические и магнитные поля. Для более технически склонных умов это машина, которая ускоряет электрически заряженные частицы, близкие к скорости света, и удерживает их в четко определенных лучах, используя электромагнитные поля.

В 20-м веке ускорители частиц были названы атомными разрушителями. Название сохраняется, несмотря на то, что современные ускорители создают столкновения между двумя субатомными частицами, а не атомными ядрами.

Столкновения таких частиц могут помочь ученым понять, как работает Вселенная. Ускорители частиц высоких энергий чрезвычайно полезны для фундаментальных и прикладных исследований в различных областях, от электроники и медицины до международной безопасности.

Мы рассмотрели некоторые из наиболее интересных фактов и статистических данных о современных ускорителях частиц, которые пробудят в вас интерес к физике частиц. Давайте начнем с основного.

Типы ускорителей частиц

Существует два основных типа ускорителей:

1) Электростатические ускорители: используйте статические электрические поля для увеличения скорости заряженных частиц. Положительная частица притягивается к отрицательно заряженной пластине, а отрицательная частица притягивается к положительно заряженной пластине.

Они простые, менее дорогие и имеют ограниченный выход энергии, что означает, что они не могут разогнать частицы до чрезвычайно высоких скоростей. Максимальная кинетическая энергия частиц зависит от ускоряющего напряжения, которое ограничено явлением, называемым электрическим пробоем.

Генератор Ван де Граафа и генератор Кокрофта-Уолтона являются наиболее распространенным примером электростатических ускорителей. Катодно-лучевая трубка любого старого компьютерного монитора является небольшим примером ускорителя этого типа.

2) Электродинамические ускорители: используйте изменяющиеся электромагнитные поля (либо колеблющиеся радиочастотные поля, либо магнитную индукцию) для ускорения частиц.

В этих устройствах частицы пропускаются через одно и то же электромагнитное поле несколько раз, поэтому они могут достигать гораздо более высоких скоростей, чем в электростатических ускорителях. Максимальная кинетическая энергия частиц не ограничена напряженностью ускоряющего поля.

Эти ускорители можно подразделить на два класса:

  1. Линейный, в котором частицы ускоряются по прямой
  2. Циркуляр, в котором частицы изгибаются на приблизительно круговой орбите с помощью магнитных полей. Частицы движутся по этой орбите, пока не достигнут достаточной энергии.

Как это работает?

На базовом уровне ускорители частиц генерируют пучок заряженных частиц, который используется для многочисленных исследовательских целей. Обычно пучок состоит из заряженных субатомных частиц (таких как протоны и электроны), но в некоторых случаях используются целые атомы более тяжелых элементов (таких как уран и золото).

Например, в кольцевых ускорителях частицы непрерывно ускоряются в круглой трубе. Напряженность электрического поля увеличивается с каждым проходом, повышая уровень энергии пучка частиц.

Когда частицы достигают необходимой скорости, цель (например, тонкий кусок металлического листа) помещается в их дорожку, где детектор частиц анализирует столкновение.

В целом, существует 6 ключевых компонентов в ускорителях частиц:

А) Частица S : обеспечивает ускорение частиц (таких как электроны или протоны). Один баллон с газообразным водородом, например, может быть источником частиц. Один атом водорода содержит один электрон и один протон.

Б) Металлическая труба: содержит вакуум, в котором движется пучок частиц. Вакуум поддерживает беспыльную среду для беспрепятственного перемещения электрически заряженных частиц.

C) Электромагниты: контролируют движение частиц, когда они проходят через металлическую трубу.

D) Электрические поля: регулярно переключаются с положительного на отрицательный. Это генерирует радиоволны, которые ускоряют заряженные частицы.

E) Цели: когда частицы достигают желаемой скорости, они сталкиваются с неподвижной целью. Иногда сталкиваются два пучка частиц.

F) Детекторы: регистрируют столкновение частиц и выявляют радиацию или субатомные частицы, генерируемые в процессе.

Самые большие ускорители частиц в мире

В настоящее время в мире действуют более 30 000 ускорителей частиц. Из них 44% используются для лучевой терапии, 41% для ионной имплантации, 9% для промышленной обработки и 4% для низкоэнергетических и биомедицинских исследований. Только 1% существующих ускорителей способны генерировать энергии свыше одного миллиарда электрон-вольт или 1 ГэВ.

В настоящее время Большой адронный коллайдер является самым мощным ускорителем частиц в мире. Он способен ускорять два пучка протонов до энергии 6,5 тера электрон-вольт. Когда эти два мощных пучка сталкиваются, они создают энергию центра масс 13 тераэлектронвольт (ТэВ).

Карта Большого адронного коллайдера| ЦЕРН

Машина лежит в туннеле глубиной 175 метров. Это 27 километров в окружности, и его кольцо магнитов может создавать магнитное поле 8.36 Тесла.

Структура содержит более 1000 дипольных магнитов, которые удерживают частицы, движущиеся почти со скоростью света: одна частица движется по 27-километровому кольцу 11 000 раз в секунду.

Он был разработан Европейской организацией ядерных исследований в сотрудничестве с более чем 10 000 исследователей и сотнями лабораторий и университетов из более чем 100 стран.

Частица бозона Хиггса, которую иногда называют "частицей Бога", была обнаружена в Большом Адронном Коллайдере в 2012 году. В том же году физики сформировали кварк-глюонную плазму, которая могла достигать 5,5 триллиона градусов по Цельсию — самой высокой температуры, зарегистрированной рукотворной машиной.

Бозон Хиггса впервые наблюдался во время экспериментов на Большом адронном коллайдере | Изображение предоставлено: Designua / Shutterstock

В ближайшие годы эта гигантская машина позволит физикам проверить различные теории физики элементарных частиц, включая анализ свойств бозонов Хиггса, поиск новых элементарных частиц, предлагаемых суперсимметричными теориями, а также других загадок во вселенной.

Применение

От промышленности до энергоснабжения, от здравоохранения до безопасности - помимо научных исследований, существует несколько областей, в которых технология, связанная с ускорением частиц, положительно влияет на жизнь людей.

Применение в медицине. Ежегодно миллионы пациентов получают диагностику и лечение на основе ускорителей в клиниках и больницах по всему миру. Ускоренные частицы (такие как протоны, электроны или более тяжелые заряженные частицы) используются для уничтожения раковых клеток и создания детального изображения изнутри тела.

Потребительские товары: ускорители частиц в настоящее время используются в различных промышленных процессах, начиная от сшивания пластмассы для термоусадочной пленки и заканчивая производством компьютерных чипов.

В частности, ускорители ионных пучков используются для изготовления электронных микросхем и упрочнения поверхностей материалов, подобных тем, которые используются в искусственных соединениях. Ускорители с электронным пучком, с другой стороны, обычно используются для изменения свойств материала, таких как пластические модификации для обработки поверхности.

Национальная безопасность: ускорители играют важную роль в управлении запасами, проверке грузов и характеристике материалов. Они в основном используются для сканирования контейнеров и предметов и помогают идентифицировать оружие и другие опасные материалы.

Что еще они могут сделать?

Анализ столкновений частиц высоких энергий может быть полезным для фундаментальных и прикладных исследований в науке. Это может помочь физикам решить некоторые фундаментальные проблемы в физике, включая глубокую структуру пространства-времени и взаимосвязь между общей теорией относительности и квантовой механикой.

Столкновение двух протонов создает поток частиц мусора | CERN

Вот четыре основных вопроса, на которые ученые надеются ответить в течение следующих нескольких десятилетий:

  1. Существуют ли дополнительные измерения, предсказанные моделями теории струн?
  2. Какова природа темной материи?
  3. Как выглядела ранняя вселенная?
  4. Почему мы видим асимметрию между веществом и антивеществом во вселенной?

По словам Стивена Хокинга, технология, основанная на ускорителе частиц, является самой близкой вещью к машинам времени. В 2010 году он написал статью , объясняющую, как можно путешествовать во времени .

Ускоритель частиц - это... Что такое Ускоритель частиц?

Вид на ускорительный центр Fermilab, США. Теватрон (кольцо на заднем плане) и кольцо-инжектор.

Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРНе, представляет собой кольцо периметром 27 километров.

В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым типа окружностей, проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

Конструкции ускорителей

Высоковольтный ускоритель (ускоритель прямого действия)

Основная статья: Высоковольтный ускоритель

Ускоритель заряженных частиц (электронов) в котором ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Важное преимущество В.У. по сравнению с др. типами ускорителей – возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95%) и возможностью создания установок большой мощности (500кВт и выше) что весьма важно при использовании ускорителей в промышленных целях.

Электростатический ускоритель

Идеологически наиболее простой, линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды.


Разновидности:

  • Ускоритель Ван де Граафа. Ускоряющее напряжение создаётся генератором Ван де Граафа, основанном на механическом переносе зарядов диэлектрической лентой. Максимальные электрические напряжения ~20МВ определяют максимальную энергию частиц ~20МэВ.
  • Каскадный ускоритель. Ускоряющее напряжение создаётся каскадным генератором, который создаёт постоянное ускоряющее высокое напряжение ~5 МВ преобразуя низкое переменное напряжение по схеме диодного умножителя.

Линейные ускорители электронов небольших энергий часто используются, как часть самых разных электровакуумных приборов (электронно-лучевая трубка, кинескоп, рентгеновская трубка и др.).

Циклотрон

Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка.

Идея циклотрона проста. Между двумя полукруглыми полыми электродами, т. н. дуантами, приложено переменное электрическое напряжение. Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица, вращаясь по окружности в магнитном поле, ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем. Понятно, что с увеличением энергии, на каждом обороте, радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.

Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1931 году Лоуренсом, за что ему была присуждена Нобелевская премия в 1939 году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50МэВ/нуклон.

Бетатрон

Другое название: индукционный ускоритель. Циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10—100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Впервые бетатрон был разработан и создан Видероэ в 1928 году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в 1940—1941 гг. в США.

Микротрон

Основная статья: Микротрон

Он же — ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.

Фазотрон (синхроциклотрон)

Принципиальное отличие от циклотрона — изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600—700 МэВ.

Синхрофазотрон

Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Синхротрон

Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полем.

Лазер на свободных электронах (ЛСЭ)

Основная статья: Лазер на свободных электронах

Специализированный источник когерентного рентгеновского излучения.

Линейный ускоритель

Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускоритель, в котором частицы пролетают однократно. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени (!) энергии частиц.

Колла́йдер

Он же ускоритель на встречных пучках. Чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.

Применение

См. также

Ссылки

  • Коломенский Д.Д., Лебедев А. Н. Теория циклических ускорителей. М.: Физматгиз, 1962.
  • A.Chao, M.Tigner, Handbook of Accelerator Physics and Engineering, 1999.
  • Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин, Эксперимент (Web-публикация)
  • История, классификация, принцип действия, основные типы современных ускорителей

Wikimedia Foundation. 2010.

УСКОРИТЕЛЬ ЧАСТИЦ - это... Что такое УСКОРИТЕЛЬ ЧАСТИЦ?

В случае ускорения протонов синхронизм будет нарушаться из-за релятивистского прироста массы примерно при 10 МэВ. Один из способов поддержания синхронизма - модулировать частоту ускоряющего напряжения так, чтобы она уменьшалась по мере увеличения радиуса орбиты и увеличения скорости частиц. Частота должна изменяться по закону


Такой синхроциклотрон может ускорять протоны до энергии в несколько сот мегаэлектровольт. Например, если напряженность магнитного поля равна 2 Тл, то частота должна уменьшаться примерно от 32 МГц в момент инжекции до 19 МГц и менее при достижении частицами энергии 400 МэВ. Такое изменение частоты ускоряющего напряжения должно происходить на протяжении нескольких миллисекунд. После того как частицы достигают высшей энергии и выводятся из ускорителя, частота возвращается к своему исходному значению и в ускоритель вводится новый сгусток частиц. Но даже при оптимальной конструкции магнита и наилучших характеристиках системы подвода высокочастотной мощности возможности циклотронов ограничиваются практическими соображениями: для удержания на орбите ускоряемых частиц с высокой энергией нужны чрезвычайно большие магниты. Так, масса магнита циклотрона на 600 МэВ, сооруженного в лаборатории ТРИУМФ в Канаде, превышает 2000 т, и он потребляет электроэнергию порядка нескольких мегаватт. Стоимость же сооружения сихроциклотрона примерно порпорциональна кубу радиуса магнита. Поэтому для достижения более высоких энергий при практически приемлемых затратах требуются новые принципы ускорения.
Протонный синхротрон. Высокая стоимость циклических ускорителей связана с большим радиусом магнита. Но можно удерживать частицы на орбите с постоянным радиусом, увеличивая напряженность магнитного поля по мере увеличения их энергии. Линейный ускоритель инжектирует на эту орбиту пучок частиц сравнительно небольшой энергии. Поскольку удерживающее поле необходимо лишь в узкой области вблизи орбиты пучка, нет необходимости в магнитах, охватывающих всю площадь орбиты. Магниты расположены лишь вдоль кольцевой вакуумной камеры, что дает огромную экономию средств. Такой подход был реализован в протонном синхротроне. Первым ускорителем подобного типа был "Космотрон" на энергию 3 ГэВ (рис. 4), который начал работать в Брукхейвенской национальной лаборатории в 1952 в США; за ним вскоре последовал "Беватрон" на энергию 6 ГэВ, построенный в Лаборатории им. Лоуренса Калифорнийского университета в Беркли (США). Сооруженный специально для обнаружения антипротона, он работал на протяжении 39 лет, продемонстрировав долговечность и надежность ускорителей частиц.

Рис. 4. КОСМОТРОН В БРУКХЕЙВЕНЕ. Ускорял протоны до энергии 3 ГэВ. Внизу - поперечное сечение ускоряющей системы. 1 - 90°-й магнит; 2 - мишень; 3 - прямолинейный участок; 4 - равновесная орбита; 5 - инжектор; 6 - ускоряющая система; 7 - ферритовый сердечник; 8 - пучок частиц; 9 - ускоряющее напряжение.
В синхротронах первого поколения, построенных в США, Великобритании, Франции и СССР, фокусировка была слабой. Поэтому была велика амплитуда радиальных колебаний частиц в процессе их ускорения. Ширина вакуумных камер составляла примерно 30 см, и в этом все-таки большом объеме требовалось тщательно контролировать конфигурацию магнитного поля. В 1952 было сделано открытие, позволившее резко уменьшить колебания пучка, а следовательно, и размеры вакуумной камеры. Это был принцип сильной, или жесткой, фокусировки. В современных протонных синхротронах со сверхпроводящими квадрупольными магнитами, расположенными по схеме сильной фокусировки, вакуумная камера может быть меньше 10 см в поперечнике, что приводит к значительному уменьшению размеров, стоимости и потребляемой мощности фокусирующих и отклоняющих магнитов. Первым синхротроном, основанным на этом принципе, был "Синхротрон с переменным градиентом" на энергию 30 ГэВ в Брукхейвене. Аналогичная установка была построена в лаборатории Европейской организации ядерных исследований (ЦЕРН) в Женеве. В середине 1990-х годов оба ускорителя все еще находились в эксплуатации. Апертура "Синхротрона с переменным градиентом" была примерно в 25 раз меньше, чем у "Космотрона". Потребляемая магнитом мощность при энергии 30 ГэВ примерно соответствовала мощности, потребляемой магнитом "Космотрона" при 3 ГэВ. "Синхротрон с переменным градиентом" ускорял 6Ч1013 протонов в импульсе, что соответствовало самой высокой интенсивности среди установок этого класса. Фокусировка в этом ускорителе осуществлялась теми же магнитами, что и отклоняли пучок; это достигалось приданием полюсам магнита формы, показанной на рис. 5. В современных ускорителях для отклонения и фокусировки пучка, как правило, используются отдельные магниты.

Рис. 5. МАГНИТ СИНХРОТРОНА С ПЕРЕМЕННЫМ ГРАДИЕНТОМ. а - форма полюсных наконечников, обеспечивающая увеличение градиента; б - магнитное поле, градиент которого таков, что на частицы в точках В и С действуют силы, направленные к точке А, а в точках D и Е - от точки А (это соответствует фокусировке по вертикали и дефокусировке по горизонтали). Знак градиента меняется от магнита к магниту, благодаря чему обеспечивается фокусировка и по горизонтали, и по вертикали.

ЛАБОРАТОРИЯ ИМ. Э. ФЕРМИ близ Батавии (США). Длина окружности "Главного кольца" ускорителя составляет 6,3 км. Кольцо расположено на глубине 9 м под окружностью в центре снимка.
В середине 1990-х годов самым крупным протонным синхротроном являлся "Теватрон" Национальной ускорительной лаборатории им. Э. Ферми в Батавии (США). Как подсказывает само название, "Теватрон" ускоряет сгустки протонов в кольце диаметром 2 км до энергии порядка 1 ТэВ. Ускорение протонов осуществляется целой системой ускорителей, начиная с генератора Кокрофта - Уолтона в качестве инжектора, из которого отрицательные ионы водорода с энергией 750 кэВ вводятся в линейный ускоритель на энергию 400 МэВ. Затем пучок линейного ускорителя пропускается через углеродную пленку для обдирки электронов и инжектируется в промежуточный синхротрон - бустер - диаметром 150 м. В бустере протоны совершают примерно 20 000 оборотов и приобретают энергию 8 ГэВ. Обычно бустер выполняет 12 быстро следующих друг за другом рабочих циклов, в результате которых в "Главное кольцо" - еще один протонный синхротрон с протяженностью кольца 6,3 км - инжектируется 12 сгустков протонов. "Главное кольцо", в котором протоны ускоряются до энергии 150 ГэВ, состоит из 1000 обычных магнитов с медными обмотками, отклоняющих и фокусирующих протоны. Непосредственно под "Главным кольцом" расположен состоящий из 1000 сверхпроводящих магнитов оконечный синхротрон "Теватрон". Пучок может выводиться по многим каналам на расстояние 1,5-3 км для проведения исследований во внешних экспериментальных залах. Для удержания на орбите пучков с более высокими энергиями требуются более сильные отклоняющие и фокусирующие магниты. Предназначенные для субъядерной "микроскопии" протонные синхротроны на энергии больше 1 ТэВ требуют тысяч сверхпроводящих и фокусирующих магнитов длиной 5-15 м с апертурой шириной в несколько сантиметров, обеспечивающих исключительно высокую точность полей и стабильность их во времени. Основными факторами, сдерживающими создание протонных синхротронов на более высокие энергии, являются большая стоимость и сложность управления, связанные с их огромными размерами.
УСКОРИТЕЛИ СО ВСТРЕЧНЫМИ ПУЧКАМИ
Циклические коллайдеры. Далеко не вся энергия ускоренной частицы идет на осуществление нужной реакции. Значительная ее часть бесполезно теряется в виде отдачи, претерпеваемой частицей мишени в силу закона сохранения импульса. Если налетающая частица имеет энергию Е, а масса частицы покоящейся мишени равна М, то полезная энергия составляет

Таким образом, в экспериментах с покоящейся мишенью на "Теватроне" полезная энергия составляет всего лишь 43 ГэВ. Стремление использовать в исследованиях частиц как можно более высокие энергии привело к созданию в ЦЕРНе и Лаборатории им. Э.Ферми протон-антипротонных коллайдеров, а также большого числа установок в разных странах со встречными электрон-позитронными пучками. В первом протонном коллайдере соударения протонов и антипротонов с энергиями 26 ГэВ происходили в кольце с длиной окружности 1,6 км (рис. 6). За несколько дней удавалось накопить пучки с током до 50 А.

Рис. 6. ПЕРЕСЕКАЮЩИЕСЯ НАКОПИТЕЛЬНЫЕ КОЛЬЦА. В лобовых столкновениях встречных пучков более полно используется энергия ускоренных частиц.
В настоящее время коллайдером с самой высокой энергией является "Теватрон", на котором проводятся эксперименты при соударении пучка протонов, имеющих энергию 1 ТэВ, со встречным пучком антипротонов той же энергии. Для таких экспериментов необходимы антипротоны, которые можно получить, бомбардируя пучком протонов высокой энергии из "Главного кольца" металлическую мишень. Рождающиеся в этих соударениях антипротоны накапливают в отдельном кольце при энергии 8 ГэВ. Когда накоплено достаточно много антипротонов, их инжектируют в "Главное кольцо", ускоряют до 150 ГэВ и далее инжектируют в "Теватрон". Здесь протоны и антипротоны одновременно ускоряют до полной энергии, а затем осуществляют их соударения. Суммарный импульс сталкивающихся частиц равен нулю, так что вся энергия 2Е оказывается полезной. В случае "Теватрона" она достигает почти 2 ТэВ. Наибольшая энергия среди электрон-позитронных коллайдеров была достигнута на "Большом электрон-позитронном накопительном кольце" в ЦЕРНе, где энергия сталкивающихся пучков на первом этапе составляла 50 ГэВ на пучок, а затем была увеличена до 100 ГэВ на пучок. В ДЕЗИ сооружен коллайдер ГЕРА, в котором происходят соударения электронов с протонами. Этот огромный выигрыш в энергии достигается ценой значительного уменьшения вероятности столкновений между частицами встречных пучков низкой плотности. Частота столкновений определяется светимостью, т.е. числом столкновений в секунду, сопровождающихся реакцией данного типа, имеющей определенное сечение. Светимость линейно зависит от энергии и тока пучка и обратно пропорциональна его радиусу. Энергию пучка коллайдера выбирают в соответствии с энергетическим масштабом исследуемых физических процессов. Для обеспечения наибольшей светимости необходимо добиться максимально возможной плотности пучков в месте их встречи. Поэтому главной технической задачей при проектировании коллайдеров является фокусировка пучков в месте их встречи в пятно очень малых размеров и увеличение тока пучка. Для достижения нужной светимости могут потребоваться токи более 1 А. Еще одна исключительно сложная техническая проблема связана с необходимостью обеспечивать в камере коллайдера сверхвысокий вакуум. Поскольку столкновения между частицами пучков происходят сравнительно редко, соударения с молекулами остаточного газа могут существенно ослаблять пучки, уменьшая вероятность изучаемых взаимодействий. Кроме того, рассеяние пучков на остаточном газе дает нежелательный фон в детекторе, способный замаскировать изучаемый физический процесс. Вакуум в камере коллайдера должен лежать в пределах 10-9 - 10-7 Па (10-11 - 10-9 мм рт. ст.) в зависимости от светимости. При более низких энергиях можно ускорять более интенсивные пучки электронов, что дает возможность исследовать редкие распады В- и К-мезонов, обусловленные электрослабыми взаимодействиями. Ряд таких установок, иногда называемых "фабриками ароматов", сооружается в настоящее время в США, Японии и Италии. Такие установки имеют два накопительных кольца - для электронов и для позитронов, пересекающихся в одной или двух точках, - областях взаимодействия. В каждом кольце содержится много сгустков частиц при полном токе более 1 А. Энергии пучков выбираются с таким расчетом, чтобы полезная энергия соответствовала резонансу, который распадается на изучаемые короткоживущие частицы - В- или К-мезоны. В основе конструкции этих установок лежат электронный синхротрон и накопительные кольца.
Линейные коллайдеры. Энергии циклических электрон-позитронных коллайдеров ограничиваются интенсивным синхротронным излучением, которое испускают пучки ускоренных частиц (см. ниже). Этого недостатка нет у линейных коллайдеров, в которых синхротронное излучение не сказывается на процессе ускорения. Линейный коллайдер состоит их двух линейных ускорителей на высокие энергии, высокоинтенсивные пучки которых - электронный и позитронный - направлены навстречу друг другу. Пучки встречаются и соударяются только один раз, после чего отводятся в поглотители. Первым линейным коллайдером является "Стэнфордский линейный коллайдер", использующий Стэнфордский линейный ускоритель длиной 3,2 км и работающий при энергии 50 ГэВ. В системе этого коллайдера сгустки электронов и позитронов ускоряются в одном и том же линейном ускорителе и разделяются по достижении пучками полной энергии. Затем электронные и позитронные сгустки транспортируются по отдельным дугам, форма которых напоминает трубки медицинского стетоскопа, и фокусируются до диаметра около 2 мкм в области взаимодействия.
Новые технологии. Поиски более экономичных методов ускорения привели к созданию новых ускорительных систем и высокочастотных генераторов большой мощности, работающих в диапазоне частот от 10 до 35 ГГц. Светимость электрон-позитронных коллайдеров должна быть исключительно высокой, поскольку сечение процессов убывает как квадрат энергии частиц. Соответственно этому и плотности пучков должны быть чрезвычайно высокими. В линейном коллайдере на энергию порядка 1 ТэВ размеры пучков могут достигать 10 нм, что намного меньше размеров пучка в "Стэнфордском линейном коллайдере" (2 мкм). При столь малых размерах пучков для точного согласования фокусирующих элементов необходимы очень мощные стабильные магниты со сложными электронными автоматическими регуляторами. При прохождении электронного и позитронного пучков друг через друга их электрическое взаимодействие нейтрализуется, а магнитное усиливается. В результате магнитные поля могут достигать 10 000 Тл. Такие гигантские поля способны сильно деформировать пучки и приводить к большому энергетическому разбросу вследствие генерации синхротронного излучения. Эти эффекты наряду с экономическими соображениями, связанными с сооружением все более и более протяженных машин, будут ставить предел энергии, достижимой на электронно-позитронных коллайдерах.
ЭЛЕКТРОННЫЕ НАКОПИТЕЛИ
Электронные синхротроны основаны на тех же принципах, что и протонные. Однако благодаря одной важной особенности они проще в техническом отношении. Малость массы электрона позволяет инжектировать пучок при скоростях, близких к скорости света. Поэтому дальнейшее увеличение энергии не связано с заметным увеличением скорости, и электронные синхротроны могут работать при фиксированной частоте ускоряющего напряжения, если пучок инжектируется с энергией около 10 МэВ. Однако это преимущество сводится на нет другим следствием малости электронной массы. Поскольку электрон движется по круговой орбите, он движется с ускорением (центростремительным), а потому испускает фотоны - излучение, которое называется синхротронным. Мощность Р синхротронного излучения пропорциональна четвертой степени энергии пучка Е и току I, а также обратно пропорциональна радиусу кольца R, так что она пропорциональна величине (E/m)4IR -1. Эта энергия, теряемая при каждом обороте электронного пучка по орбите, должна компенсироваться высокочастотным напряжением, подаваемым на ускоряющие промежутки. В рассчитанных на большие интенсивности "фабриках аромата" такие потери мощности могут достигать десятков мегаватт. Циклические ускорители типа электронных синхротронов могут использоваться и как накопители больших циркулирующих токов с постоянной высокой энергией. Такие накопители имеют два основных применения: 1) в исследованиях ядра и элементарных частиц методом встречных пучков, о чем говорилось выше, и 2) как источники синхротронного излучения, используемые в атомной физике, материаловедении, химии, биологии и медицине. Средняя энергия фотонов синхротронного излучения пропорциональна (E/m)3R-1. Таким образом, электроны с энергией порядка 1 ГэВ, циркулирующие в накопителе, испускают интенсивное синхротронное излучение в ультрафиолетовом и рентгеновском диапазонах. Большая часть фотонов испускается в пределах узкого вертикального угла порядка m/E. Поскольку радиус электронных пучков в современных накопителях на энергию порядка 1 ГэВ измеряется десятками микрометров, пучки испускаемого ими рентгеновского излучения характеризуются высокой яркостью, а потому могут служить мощным средством исследования структуры вещества. Излучение испускается по касательной к криволинейной траектории электронов. Следовательно, каждый отклоняющий магнит электронного накопительного кольца, когда через него проходит сгусток электронов, создает разворачивающийся "прожекторный луч" излучения. Оно выводится по длинным вакуумным каналам, касательным к основной вакуумной камере накопителя. Расположенные вдоль этих каналов щели и коллиматоры формируют узкие пучки, из которых далее с помощью монохроматоров выделяется нужный диапазон энергий рентгеновского излучения. Первыми источниками синхротронного излучения были установки, первоначально сооруженные для решения задач физики высоких энергий. Примером может служить Стэнфордский позитрон-электронный накопитель на энергию 3 ГэВ в Стэнфордской лаборатории синхротронного излучения. На этой установке в свое время были открыты "очарованные" мезоны. Первые источники синхротронного излучения не обладали той гибкостью, которая позволяла бы им удовлетворять разнообразным нуждам сотен пользователей. Быстрый рост потребности в синхротронном излучении с высоким потоком и большой интенсивностью пучка вызвал к жизни источники второго поколения, спроектированные с учетом потребностей всех возможных пользователей. В частности, были выбраны системы магнитов, уменьшающие эмиттанс электронного пучка. Малый эмиттанс означает меньшие размеры пучка и, следовательно, более высокую яркость источника излучения. Типичными представителями этого поколения явились накопители в Брукхейвене, служившие источниками рентгеновского излучения и излучения вакуумной ультрафиолетовой области спектра. Яркость излучения можно также увеличить, заставив пучок двигаться по синусоидальной траектории в периодической магнитной структуре и затем объединяя излучение, возникающее при каждом изгибе. Ондуляторы - магнитные структуры, обеспечивающие подобное движение, представляют собой ряд магнитных диполей, отклоняющих пучок на небольшой угол, расположенных по прямой на оси пучка. Яркость излучения такого ондулятора может в сотни раз превышать яркость излучения, возникающего в отклоняющих магнитах. В середине 1980-х годов начали создаваться источники синхротронного излучения третьего поколения с большим числом таких ондуляторов. Среди первых источников третьего поколения можно отметить "Усовершенствованный источник света" с энергией 1,5 ГэВ в Беркли, генерирующий мягкое рентгеновское излучение, а также "Усовершенствованный источник фотонов" с энергией 6 ГэВ в Аргоннской национальной лаборатории (США) и синхротрон на энергию 6 ГэВ в Европейском центре синхротронного излучения в Гренобле (Франция), которые используются как источники жесткого рентгеновского излучения. После успешного сооружения этих установок был создан ряд источников синхротронного излучения и в других местах. Новый шаг в направлении большей яркости в диапазоне от инфракрасного до жесткого рентгеновского излучения связан с использованием в системе отклоняющих магнитов "теплых" магнитных диполей с напряженностью магнитного поля около 1,5 Тл и гораздо более коротких сверхпроводящих магнитных диполей с полем в несколько тесла. Такой подход реализуется в новом источнике синхротронного излучения, создаваемом в институте П. Шеррера в Швейцарии, и при модернизации источника в Беркли. Применение синхротронного излучения в научных исследованиях получило большой размах и продолжает расширяться. Исключительная яркость таких пучков рентгеновского излучения позволяет создать новое поколение рентгеновских микроскопов для изучения биологических систем в их нормальной водной среде. Открывается возможность быстрого анализа структуры вирусов и белков для разработки новых фармацевтических препаратов с узкой направленностью действия на болезнетворные факторы и минимальными побочными эффектами. Яркие пучки рентгеновского излучения могут служить мощными микрозондами для выявления самых ничтожных количеств примесей и загрязнений. Они дают возможность очень быстро анализировать экологические пробы при исследовании путей загрязнения окружающей среды. Их можно также использовать для оценки степени чистоты больших кремниевых пластин перед дорогостоящим процессом изготовления очень сложных интегральных схем, и они открывают новые перспективы для метода литографии, позволяя в принципе создавать интегральные схемы с элементами меньше 100 нм.
УСКОРИТЕЛИ В МЕДИЦИНЕ
Ускорители играют важную практическую роль в медицинской терапии и диагностике. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным. См. также РАК.
ЛИТЕРАТУРА
Валошек П. Путешествие в глубь материи. С ускорителем ГЕРА к границам познания. М., 1995

Энциклопедия Кольера. — Открытое общество. 2000.

  • ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ
  • ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

Смотреть что такое "УСКОРИТЕЛЬ ЧАСТИЦ" в других словарях:

  • УСКОРИТЕЛЬ ЧАСТИЦ — УСКОРИТЕЛЬ ЧАСТИЦ, см. УСКОРИТЕЛЬ …   Научно-технический энциклопедический словарь

  • ускоритель частиц — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN particle accelerator …   Справочник технического переводчика

  • ускоритель частиц — dalelių greitintuvas statusas T sritis fizika atitikmenys: angl. particle accelerator vok. Teilchenbeschleuniger, m rus. ускоритель частиц, m pranc. accélérateur de particules, m …   Fizikos terminų žodynas

  • Ускоритель частиц — Вид на ускорительный центр Fermilab, США. Теватрон (кольцо на заднем плане) и кольцо инжектор. Ускоритель заряженных частиц класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители,… …   Википедия

  • УСКОРИТЕЛЬ — (ускоритель элементарных частиц), в ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ устройство для увеличения энергии заряженных частиц путем увеличения их скорости при помощи переменных электрических полей в вакуумной камере. Для того, чтобы энергия частиц… …   Научно-технический энциклопедический словарь

  • Ускоритель — заряженных частиц установка для получения частиц высоких энергий в физике и технике Ускоритель (в ракетной технике) движитель ракеты Ускоритель (графический) устройство для ускорения работы видеоадаптера в компьютере Ускоритель (клавиатурный)… …   Википедия

  • ускоритель (заряженных частиц) — Электрофизическое устройство, предназначенное для увеличения кинетической энергии заряженных частиц. Примечание Принято, что в ускорителях энергия частиц увеличивается более чем на 0,1 МэВ. [ГОСТ Р 52103 2003] Тематики ускорители заряженных… …   Справочник технического переводчика

  • ускоритель с переменно-фазовой фокусировкой — Линейный резонансный ускоритель с трубками дрейфа, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем возможно чередование ускоряющих и фокусирующих зазоров между трубками дрейфа.… …   Справочник технического переводчика

  • ускоритель с пространственно-однородной квадрупольной фокусировкой — Линейный резонансный ускоритель, в котором высокочастотное электромагнитное поле используется для ускорения, группировки и фокусировки частиц, причем ускоряющее поле имеет квадрупольную симметрию. Примечание Возможные модификации таких… …   Справочник технического переводчика

  • ускоритель заряженных частиц — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN charged particle accelerator …   Справочник технического переводчика

Книги

  • Стандартная модель и ее расширения, Валерий Емельянов. В 2007 г. в ЦЕРН начнет свою работу крупнейший современный ускоритель – Большой адронный коллайдер. Как ожидается, его энергии и светимости будет достаточно для обнаружения хиггсовского… Подробнее  Купить за 637 руб электронная книга
  • Богохульство, Престон Дуглас. Крупнейший в мире ускоритель частиц "Изабелла", спрятанный глубоко в недрах аризонской горы, создан для того, чтобы смоделировать Большой Взрыв и узнать, как зародилась вселенная. Это самая… Подробнее  Купить за 563 руб
  • Богохульство, Престон Д.. Крупнейший в мире ускоритель частиц "Изабелла", спрятанный глубоко в недрах аризонской горы, создан для того, чтобы смоделировать Большой Взрыв и узнать, как зародилась вселенная. Это самая… Подробнее  Купить за 502 руб
Другие книги по запросу «УСКОРИТЕЛЬ ЧАСТИЦ» >>

Устройство LHC: БАК на «Элементах»

Ускоритель — это установка для разгона пучков элементарных частиц; коллайдер — это такой тип ускорителя, в котором разгоняются два пучка частиц в противоположных направлениях и сталкиваются друг с другом. В русскоязычной терминологии коллайдер называют также ускорителем на встречных пучках.

С точки зрения научной задачи сам ускоритель выполняет только полдела — он лишь сталкивает частицы. Изучением результатов столкновения занимаются детекторы элементарных частиц — специальные многослойные установки, собранные вокруг точек столкновения. Иногда ускорителем называют тандем «ускоритель + детекторы»; в этом случае, если надо подчеркнуть, что речь идет именно об ускорителе, а не о детекторах, часто говорят «ускорительное кольцо». На этой страничке рассказывается именно об устройстве ускорительного кольца LHC.

Общий вид

LHC — циклический (то есть кольцевой) коллайдер; пучки протонов или ядер свинца циркулируют в нём непрерывно, совершая свыше 10 тысяч оборотов в секунду и сталкиваясь на каждом круге со встречным пучком. На рис. 1 показана схема расположения основных элементов ускорительного кольца LHC.

Всё кольцо LHC поделено на восемь секторов, границы которых отмечены точками от 1 до 8. На каждом участке (1–2, 2–3 и т. д.) стоят в ряд магниты, управляющие протонным пучком. Благодаря магнитному полю поворотных магнитов сгустки протонов не улетают прочь по касательной, а постоянно поворачиваются, оставаясь внутри ускорительного кольца. Эти магниты формируют орбиту, вдоль которой движутся протоны. Кроме того, специальные фокусирующие магниты сдерживают поперечные колебания протонов относительно «идеальной» орбиты, не давая им задевать стенки довольно узкой (диаметром несколько сантиметров) вакуумной трубы.

Подробнее про поведение протонных пучков в ускорителе

Внутри ускорителя идут рядом друг с другом две вакуумные трубы, по которым циркулируют два встречных протонных пучка, каждый в своем направлении. Эти две трубы объединяются в одну только в специально выделенных местах — в точках 1, 2, 5, 8. В этих точках происходят столкновения встречных протонных пучков, и именно вокруг них построены четыре основных детектора: два крупных — ATLAS и CMS, и два средних — ALICE и LHCb. Вблизи двух крупных экспериментов установлены также два специализированных мелких детектора — TOTEM и LHCf.

В точке 4 расположена ускорительная секция. Именно здесь протонные пучки при разгоне получают с каждым оборотом дополнительную энергию. В точке 6 находится система сброса пучка. Здесь установлены быстрые магниты, которые в случае необходимости уводят пучки по специальному каналу прочь от ускорителя. В точках 3 и 7 установлены системы чистки пучка; кроме того, эти места зарезервированы для возможных будущих экспериментов.

Протонные пучки попадают в LHC из предварительного ускорителя SPS. Линии передачи пучка (Tl2 и Tl8), соединяющие два этих кольцевых ускорителя вместе со специальными магнитами на каждом из них, составляют вместе инжекционный комплекс коллайдера LHC (от слова «инжекция» — впрыскивание пучка). Поскольку на SPS пучок крутится только в одну сторону, инжекционный комплекс состоит из двух линий и имеет несимметричный вид. В ускорительное кольцо SPS протоны попадают из источника через цепочку еще меньших ускорителей.

Магнитная система LHC

Как и любое тело, сгусток элементарных частиц, предоставленный сам себе, будет двигаться прямолинейно и равномерно. Для того чтобы удерживать его на круговой траектории внутри ускорителя (а также поддерживать от падения вниз под действием силы тяжести), требуется постоянно воздействовать на пучок магнитным полем.

На LHC для управления пучками используется несколько тысяч магнитов разного назначения. Именно они являются самой важной (и самой дорогой) частью ускорителя. Траекторией пучков управляют поворотные магниты, которые слегка разворачивают пролетающий сквозь них пучок и удерживают его внутри кольцевой вакуумной трубы. Имеются также фокусирующие магниты, не дающие пучку расплыться, и разнообразные корректирующие магниты. В точках инжекции и сброса пучка установлены специальные быстрые магниты.

Подробнее о магнитной системе Большого адронного коллайдера

Инжекционный комплекс

Протоны поступают в LHC из предварительного ускорителя SPS («Протонного суперсинхротрона»). Имеются две линии передачи пучка, которые отходят от SPS в двух местах и подходят к ускорительному кольцу LHC вблизи точек 2 и 8 (эти линии называются Tl2 и Tl8). Инжекционный комплекс — это сложное инженерное сооружение, работоспособность которого зависит не только от правильной настройки магнитной системы, но и от точной синхронизации ритма работы SPS и LHC.

Инжекция (то есть «впрыскивание») протонов в LHC происходит не непрерывно, а импульсами. Во время работы LHC линии передачи пустуют, а в предварительном ускорителе SPS накапливается очередная порция протонов. В конце каждого цикла работы LHC высокоэнергетический пучок сбрасывается, и коллайдер подготавливается к приему новой порции протонов. В течение нескольких минут следует серия импульсных включений и выключений быстрых магнитов на концах линии передачи протонов, в ходе которых протонные сгустки переводятся из SPS в LHC и один за другим выстраиваются на свои «позиции» в пучке, не мешая уже циркулирующим сгусткам.

Перед тем как попасть в SPS, протоны проходят через несколько ускорителей меньшего размера. Полный ускорительный комплекс ЦЕРНа описан на странице CERN accelerator complex (см. также краткую схему на рис. 2). Вначале с помощью ионизации протоны добываются из газообразного водорода, затем их разгоняют до энергии 50 МэВ в линейном ускорителе и впрыскивают в бустер PSB. Там протоны разгоняются до энергии 1,4 ГэВ, переводятся в протонный синхротрон PS, ускоряются до 25 ГэВ и только после этого попадают в SPS. В нём они разгоняются до 450 ГэВ и инжектируются в LHC. Похожую последовательность ускорителей проходят и ядра свинца, правда в их случае есть специфика, связанная с нагревом и атомизацией свинцового образца и ионизацией атомов.

Ускорительная секция

Протоны впрыскиваются в LHC на энергии 0,45 ТэВ и ускоряются до 7 ТэВ уже внутри основного ускорительного кольца. Этот разгон происходит во время пролета протонов сквозь несколько резонаторов, установленных в точке 4.

Резонатор представляет собой полую металлическую камеру сложной формы (см. рис. 3), внутри которой возбуждается стоячая электромагнитная волна с частотой колебаний примерно 400 МГц. Эффективное и однородное ускорение всего пучка переменным полем оказывается возможным благодаря тому, что весь пучок разбит на отдельные сгустки, следующие на строго определенном расстоянии друг за другом. Когда сгусток протонов пролетает сквозь резонатор, электромагнитное колебание находится как раз в такой фазе, чтобы электрическое поле вдоль оси пучка подталкивало протоны вперед.

Фаза колебания поля в резонаторе настроена так, что в момент пролета частиц электрическое поле не максимально, а нарастает. Так делается для того, чтобы автоматически выравнивать энергию ускоряемых частиц. Если какой-то протон случайно оказался более энергичным, чем соседи, он вырывается вперед и на следующем круге приходит в ускоряющую камеру с небольшим опережением. Из-за этого он получает чуть меньше добавочной энергии, чем остальные протоны. И наоборот, если протон случайно потерял немного энергии и оказался в хвосте своего сгустка, то при следующем пролете через ускорительную секцию он получил побольше энергии. Это свойство сгустка частиц называется автофазировкой.

Ускорение протонов с энергии инжекции 0,45 ТэВ до 7 ТэВ происходит довольно медленно, примерно за 20 минут. Скорость этого процесса ограничена вовсе не мощностью ускорительной секции, а скоростью усиления магнитного поля в поворотных магнитах — ведь оно должно расти синхронно с энергией частиц для того, чтобы удерживать их в вакуумной трубе неизменного радиуса.

Колебания электромагнитного поля в резонаторе порождают сильные токи, текущие по поверхности камеры. Для того чтобы избежать тепловых потерь энергии, резонаторы на LHC тоже работают в сверхпроводящем состоянии при температуре 4,5 К (–268,7°C). Впрочем, внутренняя поверхность резонатора не идеальна и неизбежно содержит маленькие дефекты, на которых выделяется тепло. Но поскольку резонаторы сделаны из меди, это тепло быстро отводится.

Система сброса пучка

Протонный пучок на полной энергии и интенсивности обладает большой разрушительной силой (представьте себе энергию летящего реактивного самолета, сфокусированную в поперечнике меньше миллиметра). В норме пучок циркулирует внутри вакуумной камеры и не задевает аппаратуру. Однако если в управляющей магнитной системе произойдет сбой или траектория пучка слишком сильно отклонится от расчетной, пучок станет опасен, и его нужно будет быстро сбросить. Кроме того, сброс ослабевшего пучка надо делать каждые несколько десятков часов и при нормальной работе ускорителя.

Всем этим занимается специальная система сброса пучка, установленная в точке 6. В ней размещены специальные быстрые магниты, которые при необходимости включаются в считанные микросекунды и слегка отклоняют пучок. В результате протоны сходят с круговой орбиты, затем пучок дефокусируется, по специальному каналу уходит прочь от ускорителя и в отдельном зале безопасно поглощается массивными карбон-композитными блоками (блоки от этого сильно нагреваются, но не плавятся).

Вакуумная и криогенная техника, система контроля и безопасности

Для того чтобы протонные пучки могли свободно циркулировать в LHC, внутри ускорительной трубы создан сверхглубокий вакуум. Давление остаточных газов составляет порядка 10–13 атм. Однако даже при таком низком давлении время от времени происходит столкновение протонов с молекулами остаточного газа, что сокращает время «жизни пучка» до нескольких дней.

Несмотря на то что вакуумная труба небольшая, радиусом примерно 5 см, она очень длинная, так что полный объем, подлежащий вакуумированию, сопоставим с крупным зданием. Кроме того, из-за многочисленных контактов и соединений, а также из-за большой площади внутренней поверхности вакуумной камеры задача по поддержанию нужного вакуума оказывается очень непростой.

Еще одной важной частью инфраструктуры ускорителя является криогенная система, охлаждающая ускорительное кольцо. Она поддерживает в поворотных магнитах (а также в некоторых других элементах) температуру 1,9 К (то есть –271,25°C), при которой сверхпроводник безопасно держит нужный ток и создает требуемое магнитное поле. Для поддержания рабочей температуры ускорителя используется уникально высокая теплопроводность сверхтекучего гелия. По гелиевому каналу на LHC можно передавать киловатты теплового потока при перепаде температур всего 0,1 К на расстоянии в километр!

Криогенная система на LHC многоступенчатая. Для охлаждения используется 12 миллионов литров жидкого азота и почти миллион литров жидкого гелия. LHC в ходе работы будет потреблять 2-3 грузовика жидкого азота и порядка 500 литров жидкого гелия в день.

В точках 3 и 7 расположены устройства для «чистки» пучка. Когда протонный пучок движется внутри вакуумной трубы, то протоны колеблются в поперечной плоскости, и некоторые из них могут отклониться от идеальной траектории довольно далеко. Такие «блуждающие» протоны (на языке физиков — «гало пучка») могут задеть стенки вакуумной трубы или аппаратуру. Даже если это будет ничтожная доля от всего протонного пучка, они могут локально нагреть или даже повредить аппаратуру. Например, локальное энерговыделение всего в несколько сотых долей джоуля на кубический сантиметр способно вызвать переход поворотного магнита из сверхпроводящего в нормальное состояние, что приведет к срочному сбросу пучка.

Система чистки пучка механическим образом отсекает гало пучка. Для этого в непосредственную близость к пучку (на расстояние всего пару миллиметров!) придвигаются массивные блоки — «челюсти» коллиматора. Они поглощают «блуждающие» протоны, но не мешают основной части пучка. Впрочем, «отсеченные» протоны тоже небезопасны — они сильно нагревают материал коллиматора, а также порождают на нём поток частиц более низкой энергии («вторичное гало»), которое тоже приходится отсекать вторичными коллиматорами.

Дополнительная литература:

  • Lyndon Evans, Philip Bryant. LHC Machine // Journal of Instrumentation, 3, S08001.

миниатюрный линейный ускоритель частиц, поставивший новый рекорд / ua-hosting.company corporate blog / Habr

Привычный нам принцип «больше значит мощнее» уже давно устоялся в многих отраслях жизни общества, в том числе в науке и технологиях. Однако в современных реалиях все чаще и чаще встречается практическая реализация поговорки «мал, да удал». Это проявляется как в компьютерах, которые ранее занимали целую комнату, а сейчас помещаются в ладошке ребенка, так и в ускорителях заряженных частиц. Да-да, помните большой адронный коллайдер (БАК), внушительные габариты которого (26 659 м в длину) буквально указаны в его названии? Так вот, это уже в прошлом по мнению ученых из DESY, разработавших миниатюрную версию ускорителя, который по показателям не уступает своему полноразмерному предшественнику. Более того, мини ускоритель даже установил новый мировой рекорд среди терагерцовых ускорителей, удвоив энергию внедренных электронов. Как был разработан миниатюрный ускоритель, какие основные принципы его действия и что показали практические эксперименты? Об этом нам поможет узнать доклад исследовательской группы. Поехали.

Основа исследования


По словам Дунфан Чжан (Dongfang Zhang) и его коллег из DESY (Немецкий Электронный Синхротрон), которые и разработали мини-ускоритель, сверхбыстрые источники электронов играют невероятно важную роль в жизни современного общества. Многие из них проявляются в медицине, разработке электроники и в научных исследованиях. Самой большой проблемой нынешних линейных ускорителей, использующих радиочастотные генераторы, является их дороговизна, сложность инфраструктуры и внушительные аппетиты относительно потребляемой мощности. А такие недостатки сильно ограничивают доступность подобных технологий для более широкого круга пользователей.

Эти очевидные проблемы являются отличным стимулом к разработке устройств, размеры которых не будут вызывать ужас, как и степень потребляемой мощности.

Среди относительных новинок в этой отрасли можно выделить терагерцовые ускорители, которые обладают рядом «плюшек»:

  • ожидается, что короткие волны и короткие импульсы терагерцового излучения позволят значительно увеличить порог пробоя*, вызванного полем, что позволит увеличить градиенты ускорения;
Электрический пробой* — резкое возрастание силы тока при приложении напряжения выше критического.
  • наличие эффективных методов генерации высокопольного терагерцового излучения позволяет осуществлять внутреннюю синхронизацию между электронами и полями возбуждения;
  • для создания таких устройств могут применяться классические методы, но их стоимость, время производства и размеры будут сильно сокращены.

Ученые считают, что их терагерцовый ускоритель в миллиметровых масштабах является компромиссом между обычными ускорителями, что имеются сейчас, и микро-ускорителями, которые разрабатываются, но обладают множеством недостатков ввиду своих уж очень малых габаритов.

Исследователи не отрицают, что технология терагерцового ускорения уже какое-то время находится в разработке. Однако, по их мнению, в данной сфере есть еще масса аспектов, которые не были изучены, проверены или реализованы.

В своем труде, который мы сегодня и рассматриваем, ученые демонстрируют возможности STEAM (segmented terahertz electron accelerator and manipulator) — сегментированного терагерцового электронного ускорителя и манипулятора. STEAM позволяет уменьшить длину пучка электронов до субпикосекундной длительности, обеспечивая тем самым фемтосекундный контроль над фазой ускорения.

Удалось достичь поля ускорения в 200 МВ/м (МВ — мегавольт), что приводит к рекордному терагерцовому ускорению в > 70 кэВ (килоэлектронвольт) от внедренного пучка электронов с энергией 55 кэВ. Таким образом были получены ускоренные электроны до 125 кэВ.

Структура устройства и его реализация



Изображение №1: схема исследуемого устройства.


Изображение №1-2: а — схема разработанной 5-слойной сегментированной структуры, b — соотношение расчетного ускорения и направления распространения электронов.

Пучки электронов (55 кэВ) генерируются из электронной пушки* и внедряются в терагерцовый STEAM-buncher (компрессор пучка), после чего переходят в STEAM-linac (линейный ускоритель*).

Электронная пушка* — устройство генерации пучка электронов необходимой конфигурации и энергии.
Линейный ускоритель* — ускоритель, в котором заряженные частицы проходят структуру лишь 1 раз, что отличает линейный ускоритель от циклического (например, БАК).
Оба STEAM устройства получают терагерцовые импульсы от одного лазера ближнего инфракрасного света (NIR), который также запускает фотокатод электронной пушки, что приводит к внутренней синхронизации между электронами и ускоряющими полями. Ультрафиолетовые импульсы для фотоэмиссии на фотокатоде генерируются через две последовательные стадии ГВГ* основной длины волны ближнего инфракрасного света. Этот процесс преобразовывает лазерный импульс с длиной волны 1020 нм сначала в 510 нм, а затем в 255 нм.
ГВГ* (генерация второй оптической гармоники) — процесс объединения фотонов с одинаковой частотой во время взаимодействия с нелинейным материалом, что приводит к формированию новых фотонов с удвоенной энергией и частотой, а также в два раза меньшей длиной волны.
Оставшаяся часть луча NIR-лазера разделяется на 4 луча, которые используются для генерации четырех одноцикловых терагерцовых импульсов посредством генерации разности внутриимпульсных частот.

Два терагерцовых импульса затем поступают в каждое STEAM устройство через симметричные роговые структуры, которые направляют терагерцовую энергию в область взаимодействия поперек направлению распространения электронов.

Когда электроны входят в каждое из STEAM устройство, они подвергаются воздействию электрической и магнитной составляющих силы Лоренца*.

Сила Лоренца* — сила, с которой электромагнитное поле воздействует на заряженную частицу.
В данном случае, электрическое поле отвечает за ускорение и замедление, а магнитное поле вызывает поперечные отклонения.


Изображение №2

Как мы видим на изображениях и 2b, внутри каждого STEAM устройства терагерцовые пучки разделены поперек тонкими металлическими листами в несколько слоев различной толщины, каждый из которых действует как волновод, переносящий часть полной энергии в область взаимодействия. Также в каждом слое присутствуют диэлектрические пластины, чтобы согласовать время прихода терагерцового волнового фронта* с фронтом электронов.

Волновой фронт* — поверхность, до которой дошла волна.
Оба STEAM устройства работают в электрическом режиме, то есть так, чтобы производить наложение электрического поля и подавление магнитного поля в центре области взаимодействия.

В первом устройстве электроны рассчитаны по времени так, чтобы проходить через пересечение нуля* терагерцового поля, где временные градиенты электрического поля максимизированы, а среднее поле минимизировано.

Пересечение нуля* — точка, где нет никакого напряжения.
Такая конфигурация вызывает ускорение хвоста электронного пучка и замедление его головы, что приводит к баллистической продольной фокусировке ( и ).

Во втором устройстве синхронизация электрона и терагерцового излучения устанавливается так, что электронный пучок испытывает только отрицательный цикл терагерцового электрического поля. Такая конфигурация приводит к чистому непрерывному ускорению (2b и 2d).

Лазер с NIR излучением напоминает криогенно охлажденную Yb:YLF систему, которая выдает оптические импульсы с длительностью 1.2 пс и энергией 50 мДж при длине волны 1020 нм и частоте повторения 10 Гц. А терагерцовые импульсы с центральной частотой 0.29 терагерц (период в 3.44 пс) генерируются методом наклонного фронта импульса.

Для питания STEAM-buncher (компрессор пучка) было использовано всего лишь 2 х 50 нДж терагерцовой энергии, а для STEAM-linac (линейный ускоритель) потребовалось 2 х 15 мДж.

Диаметр входного и выходного отверстий как обоих STEAM устройств составляет 120 мкм.

Компрессор пучка спроектирован с тремя слоями одинаковой высоты (0. 225 мм), которые оснащены пластинами из плавленого кварца (ϵr =4.41) длиной 0.42 и 0.84 мм для контроля временной синхронизации. Равные высоты слоев компрессора отражают факт того, что ускорение не происходит ().

А вот в линейном ускорителе высоты уже отличаются — 0.225, 0.225 и 0.250 мм (+ пластины из плавленного кварца 0.42 и 0.84 мм). Увеличение высоты слоя объясняет увеличение скорости электронов при ускорении.

Ученые отмечают, что число слоев напрямую отвечает за функционал каждого из двух устройств. Для достижения более высокой степени ускорения, к примеру, потребуется больше слоев и другая конфигурация высот для оптимизации взаимодействия.

Результаты практических опытов


Прежде всего исследователи напоминают, что в традиционных ускорителях на базе радиочастот влияние временной протяженности внедренного электронного пучка на свойства ускоренного пучка связано с изменением электрического поля, испытываемого во время взаимодействия различными электронами внутри пучка, поступающими в разное время. Таким образом, можно предположить, что поля с большим градиентом и пучки с большей длительностью приведут к большему разбросу энергий. Введенные пучки большой длительности также могут приводить к более высоким значениям эмиттансов*.
Эмиттанс* — фазовое пространство, которое занимает ускоренный пучок заряженных частиц.
В случае же терагерцового ускорителя период поля возбуждения примерно в 200 раз короче. Следовательно, напряжённость* поддерживаемого поля будет в 10 раз выше.
Напряженность электрического поля* — показатель электрического поля, равный отношению силы, приложенной на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда.
Таким образом, в терагерцовом ускорителе градиенты поля, испытываемые электронами, могут быть на несколько порядков выше, чем в обычном устройстве. Временной масштаб, на котором кривизна поля заметна, при этом будет значительно меньше. Из этого следует, что длительность вводимого пучка электронов будет иметь более выраженное влияние.

Ученые на практике решили проверить данные теории. Для этого они вводили пучки электронов разной длительности, которая контролировалась сжатием за счет первого STEAM устройства (STEAM-buncher).


Изображение №3

В случае, когда компрессор не был подключен к источнику питания, пучки электронов (55 кэВ) с зарядом ∼1 фКл (фемтокулон) проходили примерно 300 мм от электронной пушки к устройству линейного ускорителя (STEAM-linac). Эти электроны могли расширяться под действием сил пространственного заряда вплоть до длительности более 1000 фс (фемтосекунд).

При такой длительности электронный пучок занимал около 60% полуволны ускоряющего поля с частотой 1,7 пс, что приводило к энергетическому спектру после ускорения с пиком на 115 кэВ и полушириной распределения энергии более 60 кэВ ().

Для сравнения этих результатов с ожидаемыми была смоделирована ситуация распространения электронов через линейный ускоритель, когда электроны были рассинхронизированы (т.е. не совпадают с) относительно оптимального времени введения. Расчеты такой ситуации показали, что прирост энергии электронов очень зависит от момента введения вплоть до субпикосекундного временного масштаба (3b). То есть при оптимальной настройке электрон будет испытывать полный полупериод ускорения терагерцового излучения в каждом слое ().

Если же электроны прибывают в разное время, то испытывают меньшее ускорение в первом слое, от чего им требуется больше времени на его прохождение. Затем рассинхронизация усиливается в следующих слоях, от чего возникает нежелательное замедление (3d).

Дабы максимально снизить отрицательный эффект временной протяженности пучка электронов, первое STEAM устройство работало в режиме сжатия. Длительность пучка электронов на линейном ускорителе была оптимизирована до минимума ~ 350 фс (полуширина) путем настройки терагерцовой энергии, подаваемой на компрессор, и переключения линейного ускорителя в режим штриховки (4b).


Изображение №4

Минимальная длительность пучка была установлена в соответствии с длительностью УФ-импульса фотокатода, длительность которой составляла ~ 600 фс. Также важную роль сыграло расстояние между компрессором и полосой, что ограничивало силу сгущения по скорости. В совокупности эти меры позволяют обеспечить фемтосекундную точность фазы введения на стадии ускорения.

На изображении видно, что разброс энергии сжатого электронного пучка после оптимизированного ускорения в линейном ускорителе уменьшается в ~ 4 раза по сравнению с несжатым. За счет ускорения энергетический спектр сжатого пучка смещается в сторону более высоких энергий, в отличие от несжатого пучка. Пик энергетического спектра после ускорения составляет около 115 кэВ, а высокоэнергетический хвост достигает около 125 кэВ.

Эти показатели, по скромному заявлению ученых, являются новым рекордом ускорения (до ускорения было 70 кэВ) в терагерцовом диапазоне.

Но, чтобы уменьшить разброс энергии (), необходимо достичь еще более короткого пучка.


Изображение №5

В случае несжатого введенного пучка параболическая зависимость размера пучка от тока выявляет поперечный эмиттанс в горизонтальном и вертикальном направлениях: εx,n = 1.703 мм*мрад и εy,n = 1.491 мм*мрад ().

Сжатие же, в свою очередь, улучшило поперечный эмиттанс в 6 раз до εx,n = 0,285 мм*мрад (горизонтальный) и εy,n = 0,246 мм*мрад (вертикальный).

Стоит отметить, что степень уменьшения эмиттанса примерно вдвое больше, чем степень сокращения длительности пучка, что является мерой нелинейности динамики взаимодействия со временем, когда электроны испытывают сильную фокусировку и дефокусировку магнитного поля во время ускорения (5b и ).

На изображении 5b видно, что электроны, введенные в оптимальное время, испытывают весь полупериод ускорения электрического поля. А вот электроны, которые прибывают до или после оптимального момента времени, испытывают меньшее ускорение и даже частичное замедление. Такие электроны в результате получают меньше энергии, грубо говоря.

Похожая ситуация наблюдается и при воздействии магнитного поля. Электроны, введенные в оптимальное время, испытывают симметричное количество положительных и отрицательных магнитных полей. Если же введение электронов происходило раньше оптимального времени, то было больше положительных полей и меньше отрицательных. В случае введения электронов позднее оптимального времени — меньше положительных и больше отрицательных (). А такие отклонения приводят к тому, что электрон может отклониться влево, вправо, вверх или вниз в зависимости от положения относительно оси, что приводит к увеличению поперечного импульса, соответствующего фокусировке или дефокусировке луча.

Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых и дополнительные материалы к нему.

Эпилог


Суммируя, производительность ускорителя будет повышаться в случае уменьшения длительности пучка электронов. В данном труде достижимая длительность пучка была ограничена геометрией установки. Но, в теории, длительность пучка может достигать и меньше 100 фс.

Также ученые отмечают, что качество пучка можно в дальнейшем улучшить путем уменьшения высоты слоев и увеличения их числа. Однако этот метод не лишен проблем, в частности повышение сложности производства устройства.

Данный труд является начальным этапом более обширного и детального изучения миниатюрной версии линейного ускорителя. Несмотря на то, что испытанная версия уже показывает отличные результаты, которые можно справедливо назвать рекордными, работы еще много.

Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята! :)

Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).

Dell R730xd в 2 раза дешевле? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?

Ускорители частиц — лекции на ПостНауке

Прибор, который разгоняет частицы до очень высоких энергий, называется ускоритель частиц. Такие ускорители стали появляться очень давно. Простейшим ускорителем является электрическое поле. Если у вас есть электрический потенциал или разность потенциалов, то электрически заряженная частица будет двигаться в этом потенциале и ускоряться. Точно так же действует и магнитное поле. По сути дела, мы используем электромагнитное взаимодействие, электрические магнитные поля, чтобы разогнать частицы. Простейшим является какой-нибудь конденсатор с разностью потенциалов, и он будет слегка разгонять частицы.

Но нам хотелось бы разогнать частицу до очень больших энергий. Космические лучи — это такой естественный природный ускоритель. Космические лучи прилетают к нам с очень большой энергией. Но в космических лучах частиц мало, изучать их довольно трудно. Хотя первым ускорителем и была Вселенная, но потом решили сами научиться разгонять частицы и начали строить ускорители.

Ясно, что если длина, на которой ускоряются частицы, небольшая, то они просто не успеют набрать большую энергию. Отсюда взялась идея кольцевого ускорителя: частица будет двигаться по кольцу все быстрее и быстрее, а электрическое или магнитное поле будет ее все время подхлестывать, как дрессировщик подхлестывает лошадей на арене цирка. И частицы будут разгоняться сильнее и сильнее. Первые такие ускорители были созданы в середине прошлого века, называются они циклотроны, и стремление было получить максимальную энергию частиц, то есть разогнать их до максимально большой скорости.

Энергия ускорителей измеряется в единицах, которые называются электронвольтами (эВ). Электронвольт — это энергия, которую приобретает электрон, если он проходит разность потенциалов в 1 вольт, отсюда и название — электронвольт. Ускорители разгоняли частицы до миллионов эВ. Эти единицы обычно называются сокращенно МэВ. На самом деле это довольно большие энергии, скорость движения частиц уже начинает приближаться к скорости света.

Что происходит дальше? Дальше на пути этой частицы можно поставить мишень — кусок какого-то металла, или какой-то газ, или что-то еще, и частица ударяет в эту мишень.

В момент удара высвобождается колоссальная кинетическая энергия частицы, и из этой энергии рождаются новые объекты, рождаются новые частицы.

Так были открыты частицы, которых мы не знали. На самом деле, что там родится, было просто неясно, и надо было изучать продукты этого самого взаимодействия.

Как их изучать? Как увидеть то, что родилось на ускорителе? Желательно частицу как-то зафиксировать. То, где частицы фиксируются или детектируются, обычно называется детектор. Сначала детекторами были фотопленки, фотоэмульсии, на которых частица оставляла след, потом газовые камеры, в которые помещалось магнитное поле, и частица оставляла след наподобие реверсивного следа самолета в небе. Но постепенно в современное время мы переходим к компьютерной регистрации того, что происходит.

Детекторы стали очень большими, современный детектор на Большом адронном коллайдере представляет собой четырехэтажный дом, и в этом детекторе фиксируется все: импульс частицы, угол, под которым она вылетает, заряд частицы. Есть специальные детекторы, которые фиксируют легкие частицы, лептоны, есть специальный детектор, который фиксирует адроны. Короче говоря, это превратилось в огромную индустрию.

Но сами ускорители все время наращивали свою энергию. В России или, скорее, в Советском Союзе в свое время тоже были построены ускорители, и первые циклотроны появились в послевоенные годы. Дальше эта ускорительная наука совершенствовалась, и задачей было все увеличивать и увеличивать энергию частиц. В подмосковной Дубне был построен синхрофазотрон. Так назывался ускоритель, который был построен по новому принципу так называемой автофазировки, когда магнитное поле, которое подхлестывает частицу, чтобы она быстрее и быстрее двигалась, автоматически синхронизировало фазу движения. В результате частица разгонялась до очень высоких энергий. Синхрофазотрон, который был построен в конце 50-х годов в Дубне, ускорял частицы до энергии 10 миллиардов эВ. Естественно, аналогичные ускорители были и в Европе, и в Соединенных Штатах, и было некое соревнование, у кого будет больше энергия.

Следующей большой машиной, построенной в Советском Союзе, был ускоритель в Серпухове, или Серпуховский ускоритель, на энергию уже 70 миллиардов эВ, то есть в семь раз больше, чем в Дубне. Но этот рекорд устоял недолго. Через несколько лет был построен ускоритель на 400 миллиардов эВ, или на 400 ГэВ. Современные ускорители еще больше.

Ускоритель элементарных частиц - это... Что такое Ускоритель элементарных частиц?

Вид на ускорительный центр Fermilab, США. Теватрон (кольцо на заднем плане) и кольцо-инжектор.

Ускори́тель заря́женных части́ц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРНе, представляет собой кольцо периметром 27 километров.

В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым типа окружностей, проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

Конструкции ускорителей

Высоковольтный ускоритель (ускоритель прямого действия)

Основная статья: Высоковольтный ускоритель

Ускоритель заряженных частиц (электронов) в котором ускорение заряженных частиц происходит электрическим полем, неизменным или слабо меняющимся в течение всего времени ускорения частиц. Важное преимущество В.У. по сравнению с др. типами ускорителей – возможность получения малого разброса по энергии частиц, ускоряемых в постоянном во времени и однородном электрическом поле. Данный тип ускорителей характеризуется высоким КПД (до 95%) и возможностью создания установок большой мощности (500кВт и выше) что весьма важно при использовании ускорителей в промышленных целях.

Электростатический ускоритель

Идеологически наиболее простой, линейный ускоритель. Частицы ускоряются постоянным электрическим полем и движутся прямолинейно по вакуумной камере, вдоль которой расположены ускоряющие электроды.


Разновидности:

  • Ускоритель Ван де Граафа. Ускоряющее напряжение создаётся генератором Ван де Граафа, основанном на механическом переносе зарядов диэлектрической лентой. Максимальные электрические напряжения ~20МВ определяют максимальную энергию частиц ~20МэВ.
  • Каскадный ускоритель. Ускоряющее напряжение создаётся каскадным генератором, который создаёт постоянное ускоряющее высокое напряжение ~5 МВ преобразуя низкое переменное напряжение по схеме диодного умножителя.

Линейные ускорители электронов небольших энергий часто используются, как часть самых разных электровакуумных приборов (электронно-лучевая трубка, кинескоп, рентгеновская трубка и др.).

Циклотрон

Устройство циклотрона. 1 — место поступления частиц, 2 — траектория их движения, 3 — электроды, 4 — источник переменного напряжения. Магнитное поле направлено перпендикулярно плоскости рисунка.

Идея циклотрона проста. Между двумя полукруглыми полыми электродами, т. н. дуантами, приложено переменное электрическое напряжение. Дуанты помещены между полюсами электромагнита, создающего постоянное магнитное поле. Частица, вращаясь по окружности в магнитном поле, ускоряется на каждом обороте электрическим полем в щели между дуантами. Для этого необходимо, чтобы частота изменения полярности напряжения на дуантах была равна частоте обращения частицы. Иными словами, циклотрон является резонансным ускорителем. Понятно, что с увеличением энергии, на каждом обороте, радиус траектории частицы будет увеличиваться, пока она не выйдет за пределы дуантов.

Циклотрон — первый из циклических ускорителей. Впервые был разработан и построен в 1931 году Лоуренсом, за что ему была присуждена Нобелевская премия в 1939 году. До сих пор циклотроны применяются для ускорения тяжёлых частиц до относительно небольших энергий, до 50МэВ/нуклон.

Бетатрон

Другое название: индукционный ускоритель. Циклический ускоритель, в котором ускорение частиц осуществляется вихревым электрическим полем, индуцируемым изменением магнитного потока, охватываемого орбитой пучка. Поскольку для создания вихревого электрического поля необходимо изменять магнитное поле сердечника, а магнитные поля в несверхпроводящих машинах обычно ограничены эффектами насыщения железа на уровне ~20кГс, возникает ограничение сверху на максимальную энергию бетатрона. Бетатроны используются преимущественно для ускорения электронов до энергий 10—100 МэВ (максимум достигнутой в бетатроне энергии 300 МэВ).

Впервые бетатрон был разработан и создан Видероэ в 1928 году, который, однако, ему не удалось запустить. Первый надёжно работающий бетатрон был создан Д. В. Керстом лишь в 1940—1941 гг. в США.

Микротрон

Основная статья: Микротрон

Он же — ускоритель с переменной кратностью. Резонансный циклический ускоритель с постоянным как у циклотрона ведущим магнитным полем и частотой ускоряющего напряжения. Идея микротрона состоит в том, чтобы сделать приращение времени оборота частицы, получающееся за счёт ускорения на каждом обороте, кратным периоду колебаний ускоряющего напряжения.

Фазотрон (синхроциклотрон)

Принципиальное отличие от циклотрона — изменяемая в процессе ускорения частота электрического поля. Это позволяет, за счёт автофазировки, поднять максимальную энергию ускоряемых ионов по сравнению с предельным значением для циклотрона. Энергия в фазотронах достигает 600—700 МэВ.

Синхрофазотрон

Циклический ускоритель с постоянной длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите, изменяется как ведущее магнитное поле, так и частота ускоряющего электрического поля. Большинство современных циклических ускорителей являются сильнофокусирующими синхрофазотронами. Для ультрарелятивистских электронов в процессе ускорения частота обращения практически не меняется, и используются синхротроны.

Синхротрон

Циклический ускоритель с постоянной длиной орбиты и постоянной частотой ускоряющего электрического поля, но изменяющимся ведущим магнитным полем.

Лазер на свободных электронах (ЛСЭ)

Основная статья: Лазер на свободных электронах

Специализированный источник когерентного рентгеновского излучения.

Линейный ускоритель

Также часто называется ли́нак (сокращение от LINear ACcelerator). Ускоритель, в котором частицы пролетают однократно. Линейные ускорители чаще всего используются для первичного ускорения частиц, полученных с электронной пушки или источника ионов. Однако, идея линейного коллайдера на полную энергию также не нова. Основным преимуществом линаков является возможность получения ультрамалых эмиттансов и отсутствие потерь энергии на излучение, которые растут пропорционально четвёртой степени (!) энергии частиц.

Колла́йдер

Он же ускоритель на встречных пучках. Чисто экспериментальные установки, цель которых — изучение процессов столкновения частиц высоких энергий.

Применение

См. также

Ссылки

  • Коломенский Д.Д., Лебедев А. Н. Теория циклических ускорителей. М.: Физматгиз, 1962.
  • A.Chao, M.Tigner, Handbook of Accelerator Physics and Engineering, 1999.
  • Б.С. Ишханов, И.М. Капитонов, Э.И. Кэбин, Эксперимент (Web-публикация)
  • История, классификация, принцип действия, основные типы современных ускорителей

Wikimedia Foundation. 2010.

Как ученые разгоняют частицы в адронном коллайдере? И что происходит при столкновении частиц?

Пожалуй, напишу как БАК работает вообще.

Вообразите себе обычный баллон со сжатым водородом. Вроде бы мелочь, но именно с него начинается работа самого большой ускорителя элементарных частиц в мире.

Атомы водорода поступают в камеру подачи линейного ускорителя строго отмеренными порциями. Там от от них отделяют электроны( отрицательно заряженные элементарные частицы) оставляя только ядра водорода- протоны (положительно заряженные элементарные частицы). Как раз это положительный заряд позволяет давать им ускорение при помощи электрического поля. Дальше их сталкивают друг с другом, чтобы выделить большой объём энергии.  Кстати, эта модель повторяет те действия, которые происходили в момент Большого Взрыва. После протоны отправляют в линейный ускоритель. На выходе отсюда протоны будут двигаться со скоростью, равной 1/3 скорости света. Это всё первый этап.

Теперь они готовы к второму этапу- попаданию в бустерЧастицы разделяют на 4 части, что максимально увеличить плотность их потока. Каждая часть поступает в отдельное кольцо бустера. Длина каждого кольца 137 м. Здесь применено круговое движение, поскольку линейное уже не эффективно. Чтобы придать большую скорость, частицы проходят по кругу много раз, причём на них воздействуют пульсирующим электрическим полем. Нужное направление регулируют магнитами, мощное излучение удерживают их на этой траектории. Здесь их разгоняют до 91,6% скорости света, собирая их в плотный пучок.

После этого частицы из всех четырёх колец собираются вместе и поступают в фотонный синхротрон. Это наша третья ступень. Что же будет происходить с двумя такими порциями протонов? Длина синхротрона 628 м. Это расстояние протоны проходят за 1,2 секунды разгоняясь до 99.9% скорости света. Классно, неправда ли? Именно здесь достигается точка перехода. К энергии движения частиц прибавляется энергия электрического поля, но дальше частицы разгонятся почти не могут, запрещено природой.Но за счёт этого увеличивается масса протонов. Поэтому они не разгоняются, а становятся тяжелее. Кинетическая энергия( грубо, говоря, энергия движения, которая учитывает массу/скорость) измеряется в электрон вольтах. На этом этапе энергия каждой частицы равняется примерно 25 млрд. эВ, а масса протонов в 25 раз тяжелее, че

Большой электрон-позитронный коллайдер — Википедия

Материал из Википедии — свободной энциклопедии

Большо́й электрон-позитро́нный колла́йдер (LEP англ. Large Electron-Positron collider) — ускоритель заряженных частиц в международном научно-исследовательском центре CERN.

В начале 1980-х годов был предложен проект ускорителя, осуществляющего столкновения электронов и их античастиц — позитронов, — Большого электрон-позитронного коллайдера (LEP). Осенью 1983 года началось строительство ускорителя. В долине Женевского озера на глубине ста метров был вырыт кольцевой туннель общей длиной 27 километров. Качество подземных работ было столь высоким, что, когда в 1988 году два конца туннеля соединились, расхождение между ними составило всего один сантиметр. В точках пересечения встречных пучков ускорителя были построены четыре экспериментальные установки, каждая из которых состояла из большого числа детекторов частиц.

Ускоритель неоднократно перестраивался для достижения все больших энергий частиц. К концу 2000 года на нём была достигнута энергия в 209 ГэВ (на каждый из встречных пучков приходится лишь половина этой энергии), и в этом же году эксперименты были завершены, а сам ускоритель демонтирован. В настоящее время в этом же туннеле размещен новый ускоритель — Большой адронный коллайдер (БАК).

Электромагнитный резонатор, ныне являющийся экспонатом музея CERN

LEP за одиннадцать лет работы подарил физикам много интересных результатов, самые важные из которых — всестороннее изучение W и Z бозонов. Современные представления о природе этого типа взаимодействия сложились именно под влиянием результатов работы ускорителя LEP. Эксперименты на LEP позволили показать[1], что слабое и электромагнитное взаимодействия имеют сходную природу и могут быть объединены в рамках одного взаимодействия — электрослабого.

Хотя коллайдер был остановлен и демонтирован в ноябре 2000 года[2] чтобы освободить тоннель для спроектированного LHC, после обнаружения бозона Хиггса на энергии 126 ГэВ возникли идеи построить так называемую фабрику Хиггс-бозонов для массового их рождения и детального изучения свойств. Поскольку теперь понятно, что LEP не дотянул по энергии 10-15 % для рождения бозонов Хиггса, один из рассматриваемых вариантов — возродить электрон-позитронный ускоритель в том же туннеле, после окончания физической программы LHC (проект получил название LEP3). Предлагается поднять суммарную энергию до 240 ГэВ, что позволит рождать десятки тысяч хиггсовских бозонов в год в канале e+e- → ZH. Мощность синхротронного излучения электронов, циркулирующих в ускорителе, при этом достигнет 100 МВт, что хоть и находится в пределах разумных значений, но предъявляет новые серьёзные требования к аппаратуре. Кроме того, из-за малого времени жизни пучков (заметно меньше часа) придётся перейти к режиму инжекции пучков с накоплением, когда новые порции частиц добавляются к уже циркулирующим в коллайдере сгусткам (а не заменяют их).

В ходе настройки ускорителя учёные установили зависимость энергии разгоняемых частиц от ряда неожиданных факторов: положения Луны, уровня воды в Женевском озере, прибытия поездов на вокзал в Женеве. Такую зависимость они связали с деформациями кольца ускорителя, вызываемыми этими факторами.[1]


Смотрите также

Описание: