Пластиды где находятся в клетке


Пластиды

Пластиды — это органоиды клеток растений и некоторых фотосинтезирующих простейших. У животных и грибов пластид нет.

Пластиды делятся на несколько типов. Наиболее важный и известный — хлоропласт, содержащий зеленый пигмент хлорофилл, который обеспечивает процесс фотосинтеза.

Другими видами пластид являются разноцветные хромопласты и бесцветные лейкопласты. Также выделяют амилопласты, липидопласты, протеинопласты, которые часто считают разновидностями лейкопластов.

Виды пластид: хлоропласты, хромопласты, лейкопласты

Все виды пластид связаны между собой общим происхождением или возможным взаимопревращением. Пластиды развиваются из пропластид – более мелких органоидов меристематических клеток.

Строение пластид

Большинство пластид относится к двумембранным органоидам, у них есть внешняя и внутренняя мембраны. Однако встречаются организмы, чьи пластиды имеют четыре мембраны, что связано с особенностями их происхождения.

Во многих пластидах, особенно в хлоропластах, хорошо развита внутренняя мембранная система, формирующая такие структуры как тилакоиды, граны (стопки тилакоидов), ламелы – удлиненные тилакоиды, соединяющие соседние граны. Внутренне содержимое пластид обычно называют стромой. В ней помимо прочего находятся крахмальные зерна.

Считается, что в процессе эволюции пластиды появились аналогично митохондриям — путем внедрения в клетку-хозяина другой прокариотической клетки, способной в данном случае к фотосинтезу. Поэтому пластиды считают полуавтономными органеллами. Они могут делиться независимо от делений клетки, у них есть собственная ДНК, РНК, рибосомы прокариотического типа, т. е. собственный белоксинтезирующий аппарат. Это не значит, что в пластиды не поступают белки и РНК из цитоплазмы. Часть генов, управляющей их функционированием, находится как раз в ядре.

Функции пластид

Функции пластид зависят от их типа. Хлоропласты выполняют фотосинтезирующую функцию. В лейкопластах накапливаются запасные питательные вещества: крахмал в амилопластах, жиры в элайопластах (липидопластах), белки в протеинопластах.

Хромопласты, за счет содержащихся в них пигментов-каротиноидов, окрашивают различные части растений – цветки, плоды, корнеплоды, осенние листья и др. Яркий окрас часто служит своеобразным сигналом для животных-опылителей и распространителей плодов и семян.

В дегенерирующих зеленых частях растений хлоропласты превращаются в хромопласты. Пигмент хлорофилл разрушается, поэтому остальные пигменты, несмотря на малое количество, становятся в пластидах заметными и окрашивают туже листву в желто-красные оттенки.

Хромопласты — Википедия

Материал из Википедии — свободной энциклопедии

Хромопласты в клетках чёрного перца

Хромопла́сты — жёлтые, оранжевые, красные, иногда коричневые пластиды высших растений[1][2].

Окраска хромопластов обусловлена наличием комбинации липофильных (жирорастворимых) пигментов — каротиноидов. Синие и фиолетовые (антоцианы) и жёлтые (антохлор) пигменты высших растений водорастворимы и накапливаются в клеточном соке вакуолей.

Хромопласты могут развиваться из хлоропластов, которые теряют хлорофилл и крахмал, что заметно при созревании плодов. Развитие хромопластов связано с активацией ферментов биосинтеза каротиноидов. Неактивные формы этих ферментов как правило присутствуют в строме, а активные формы локализуются в мембранах пластид, где также накапливаются липофильные предшественники каротиноидов.

Пожелтение листьев перед листопадом связано с разрушением хлорофилла и демаскированием уже накопленных в хлоропластах каротиноидов. При этом синтез каротиноидов de novo незначителен. Таким образом, изменение пластид при старении листьев отличается от активного перехода хлоропластов в хромопласты при созревании плодов или формировании окрашенных лепестков. В связи с этим хромопласты, образующиеся при стрессе или старении листьев в результате разрушения хлорофилла, называют геронтопласты.

Хромопласты могут дифференцировать непосредственно из пропластид.

Хромопласты могут редифференцироваться в хлоропласты, что часто наблюдается при освещении базальной части корнеплода моркови.

Хромопласты придают яркий цвет созревшим цветкам и плодам, что необходимо для привлечения насекомых-опылителей и животных, которые разносят их семена[1].

Пластиды - это... Что такое Пластиды?

Пласти́ды (от др.-греч. πλαστός — вылепленный) — органоиды эукариотических растений и некоторых фотосинтезирующих простейших (например, эвглены зеленой). Покрыты двойной мембраной и имеют в своём составе множество копий кольцевой ДНК. По окраске и выполняемой функции выделяют три основных типа пластид:

  • Лейкопласты — неокрашенные пластиды, как правило выполняют запасающую функцию. В лейкопластах клубней картофеля накапливается крахмал. Лейкопласты высших растений могут превращаться в хлоропласты или хромопласты.
  • Хромопласты — пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Окраска хромопластов связана с накоплением в них каротиноидов. Хромопласты определяют окраску осенних листьев, лепестков цветов, корнеплодов, созревших плодов.
  • Хлоропласты — пластиды, несущие фотосинтезирующие пигменты — хлорофиллы. Имеют зелёную окраску у высших растений, харовых и зелёных водорослей. Набор пигментов, участвующих в фотосинтезе (и, соответственно, определяющих окраску хлоропласта) различен у представителей разных таксономических отделов. Хлоропласты имеют сложную внутреннюю структуру.
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.

 

Пластиды — лекции на ПостНауке

Хромопласты играют важную роль для привлечения разнообразных опылителей, распространителей плодов, поэтому многие цветки окрашены в желтый, оранжевый, алый насыщенный цвет. Это все для привлечения опылителей, которые хорошо видят в красной части спектра. Красные плоды раскрашены для распространителей плодов — прежде всего это птицы, и млекопитающие стараются не отстать. Можно сказать, что часть плодов раскрашена для человека.

Многие растения для агентов распространения и опыления используют душистые вещества. Растение должно не только выглядеть привлекательно, но и вкусно пахнуть, желательно еще и на вкус не подкачать. В этом тоже помогают пластиды. Если мы возьмем апельсин, зажжем свечу и попробуем сжать кожуру, оттуда брызнет воспламеняющееся эфирное масло. Оказывается, эфирные масла тоже синтезируются внутри пластид. В случае цитрусовых они накапливаются в специальных вместилищах, которые разрываются при чистке кожуры апельсина. У некоторых растений пластиды могут быть бесцветными и выполнять только синтез душистых веществ. Примерами таких веществ может быть ментол, который обеспечивает запах мяты, или вещества, которые придают душистость розы. Все они начинают синтез внутри пластид. Потом они накапливаются под клеточной стенкой, испаряются, и мы ощущаем такой приятный аромат.

Пластиды очень важны для создания запасов внутри растения. Дело в том, что крахмал умеют синтезировать только пластиды, и в цитоплазме крахмала совершенно нет. Если растение хочет сделать какой-нибудь долговременный запас, то оно вынуждено хранить его внутри пластид. Такая пластида, полностью набитая крахмалом, называется амилопластом. Пример таких растений, у которых есть амилопласты, — картофель, и крахмал в нем легко обнаружить классической йодной реакцией. Кроме того, можно показать, что хлоропласт и амилопласт очень пластичные вещи. Если вы оставите картофелину на подоконнике, то она позеленеет: часть амилопластов превратилась в хлоропласты и приобрела зеленый цвет. Бататы показывают нам другой удивительный пример промежуточных пластид между хромопластом и амилопластом: с одной стороны, корень батата накапливает каротиноиды, с другой стороны, он достаточно богатый крахмалом, и на вкус он какой-то промежуточный, между морковкой и картошкой.

Пластиды важны для растения, чтобы оно ориентировалось в пространстве. Оказывается, набитые крахмалом пластиды тяжелые, они давят на определенную часть клетки, и клетка может воспринять, где находится центр Земли, и принять соответствующее решение. У растения самая чувствительная к силе тяготения часть располагается в кончике корня. Там находятся статолиты, которые образуются из амилопластов, набитых крахмальными зернами. По их положению растение оценивает направление роста корня: или расти вертикально вниз, или корень уже отклонился, и так оно корректирует свой рост благодаря пластидам. Такие же зоны есть в стебле, стебель тоже способен приподняться и расти вдоль вектора силы тяжести. Если бы не было пластид, то растение не смогло бы этого сделать.

Пластиды

Основные понятия

Пластиды являются органоидами протопласта, характерными только для растительных клеток. Их нет лишь у бактерий, синезеленых водорослей и, возможно, грибов.

У высших растений пластиды находятся во взрослых вегетативных клетках всех органов — в стебле, листе, корне и цветке. Пластиды — это сравнительно крупные органоиды, значительно крупнее митохондрий, а иногда даже и крупнее ядра, более плотные, чем окружающая их цитоплазма, хорошо видимые в световой микроскоп. Они имеют характерное строение и выполняют различные функции, связанные главным образом с синтезом органических веществ.

Во взрослой растительной клетке в зависимости от окраски, формы и функции различают три основных типа пластид: хлоропласта (пластиды зеленого цвета), хромопласты (пластиды желтого и оранжевого цвета) и лейкопласты (бесцветные пластиды). Последние по своему размеру меньше пластид двух предыдущих типов.

Хлоропласты

Это наиболее изученные и имеющие наибольшее значение пластиды. Они содержат зеленый пигмент хлорофилл. Этот пигмент находится в растениях в нескольких формах. Благодаря хлоропластам, точнее благодаря содержащемуся в них хлорофиллу лик земли выглядит зеленым. Среди высших растений хлорофилла нет лишь у некоторых сапрофитов и паразитов, а также у растений при содержании их в полной темноте. Такие растения имеют обычно бледно-желтую окраску. Синтез хлорофилла происходит обычно только на свету, поэтому при содержании растений в темноте они остаются незелеными и называются этиолированными. В хлоропластах содержатся также и другие пигменты, относящиеся к группе каротиноидов, в частности желтый — ксантофилл и оранжевый — каротин, но обычно они маскируются хлорофиллом. По химическому составу хлоропласта несколько отличаются от цитоплазмы: например, содержание липидов в хлоропластах составляет 20—40% от сухого веса, тогда как в цитоплазме их всего 2—3%.

Структурной основой хлоропласта являются белки (около 50% сухого веса), они содержат также 5—10% хлорофилла и 1—2% каротиноидов. Как и в митохондриях, в хлоропластах обнаружено небольшое количество РНК (0,5—3,5%) и еще меньше ДНК. Исключительное значение хлоропластов в том, что в них происходит процесс фотосинтеза. Крахмал, образующийся при фотосинтезе, называется первичным, или ассимиляционным, он откладывается в хлоропластах в виде мелких крахмальных зерен. Для нормального протекания фотосинтеза необходимо присутствие хлорофилла. Хлорофилл — главное действующее начало в осуществлении фотосинтеза. Он поглощает энергию света и направляет ее на совершение фотосинтетических реакций. Из пластид хлорофилл можно извлечь с помощью спирта, ацетона или других органических растворителей. Роль желтых пигментов в фотосинтезе еще недостаточно выяснена. Предполагают, что они также поглощают солнечную энергию и передают ее хлорофиллу или же вместе с ним осуществляют специфические, важные для фотосинтеза реакции.

В соответствии с их функциями хлоропласты находятся преимущественно в фотосинтезирующих органах и тканях, обращенных к свету — в листьях и молодых стеблях, незрелых плодах. Иногда хлоропласты встречаются даже в корнях, например, в придаточных корнях кукурузы. Но основное их количество сосредоточено в клетках мезофилла (мякоти) листа.

В отличие от других органоидов, хлоропласты высших растений характеризуются однообразием и постоянством формы и размеров. Чаще всего они облада

Пластиды | Cell Biology.ru

Хлоропласт

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.
У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.
У высших растений также встречается деление зрелых хлоропластов, но очень редко. Увеличение числа хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид. Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм:

Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид. Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней. Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.

Хлоропласты

Хлоропласты – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров. структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм.
у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.
Хлоропласты представляют собой структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.
Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.
Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами.
Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.
В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.
Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую.

Функции хлоропластов

Геном пластид

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов близки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.
Так же как в случае хлоропластов мы вновь сталкиваемся с существованием особой системы синтеза белка, отличной от таковой в клетке.
Эти открытия вновь пробудили интерес к теории симбиотического происхождения хлоропластов. Идея о том, что хлоропласты возникли за счет объединения клеток-гетеротрофов с прокариотическими синезелеными водорослями, высказанная на рубеже XIX и XX вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое подтверждение. В пользу этой теории говорит удивительное сходство в строении хлоропластов и синезеленых водорослей, сходство с основными их функциональными особенностями, и в первую очередь со способностью к фотосинтетическим процессам.
Известны многочисленные факты истинного эндосимбиоза синезеленых водорослей с клетками низших растений и простейших, где они функционируют и снабжают клетку-хозяина продуктами фотосинтеза. Оказалось, что выделенные хлоропласты могут также отбираться некоторыми клетками и использоваться ими как эндосимбионты. У многих беспозвоночных (коловратки, моллюски), питающихся высшими водорослями, которые они переваривают, интактные хлоропласты оказываются внутри клеток пищеварительных желез. Так, у некоторых растительноядных моллюсков в клетках найдены интактные хлоропласты с функционирующими фотосинтетическими системами, за активностью которых следили по включению С14О2.
Как оказалось, хлоропласты могут быть введены в цитоплазму клеток культуры фибробластов мыши путем пиноцитоза. Однако они не подвергались атаке гидролаз. Такие клетки, включившие зеленые хлоропласты, могли делиться в течение пяти генераций, а хлоропласты при этом оставались интактными и проводили фотосинтетические реакции. Были предприняты попытки культивировать хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать, в них шел синтез РНК, они оставались интактными 100 ч, у них даже в течение 24 ч наблюдались деления. Но затем происходило падение активности хлоропластов, и они погибали.
Эти наблюдения и целый ряд биохимических работ показали, что те черты автономии, которыми обладают хлоропласты, еще недостаточны для длительного поддержания их функций и тем более для их воспроизведения.
В последнее время удалось полностью расшифровать всю последовательность нуклеотидов в составе циклической молекулы ДНК хлоропластов высших растений. Эта ДНК может кодировать до 120 генов, среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов, гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы, части белков комплексов цепи переноса электронов, одной из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных белков. Интересно, что сходный набор генов в ДНК хлоропластов обнаружен у таких далеко отстоящих представителей высших растений как табак и печеночный мох.
Основная же масса белков хлоропластов контролируется ядерным геномом. Оказалось, что ряд важнейших белков, ферментов, а соответственно и метаболические процессы хлоропластов находятся под генетическим контролем ядра. Так, клеточное ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов, липидов, крахмала. Под ядерным контролем находятся многие энзимы темновой стадии фотосинтеза и другие ферменты, в том числе некоторые компоненты цепи транспорта электронов. Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу хлоропластов. Под контролем ядерных генов находится большая часть рибосомных белков. Все эти данные заставляют говорить о хлоропластах, так же как и о митохондриях, как о структурах с ограниченной автономией.
Транспорт белков из цитоплазмы в пластиды происходит в принципе сходно с таковым у митохондрий. Здесь также в местах сближения внешней и внутренней мембран хлоропласта располагаются каналообразующие интегральные белки, которые узнают сигнальные последовательности хлоропластных белков, синтезированных в цитоплазме, и транспортируют их в матрикс-строму. Из стромы импортируемые белки согласно дополнительным сигнальным последовательностям могут включаться в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя и внутренняя мембраны) или локализоваться в строме, входя в состав рибосом, ферментных комплексов цикла Кальвина и др.
Удивительное сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов – с другой, служит веским аргументом в пользу теории симбиотического происхождения этих органелл. Согласно этой теории, возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотический генофор формируется в обособленное от цитоплазмы ядро. Так могли возникнуть гетеротрофные эукариотические клетки. Повторные эндосимбиотические взаимоотношения между первичными эукариотическими клетками и синезелеными водорослями привели к появлению в них структур типа хлоропластов, позволяющих клеткам осуществлять автосинтетические процессы и не зависеть от наличия органических субстратов (рис. 236). В процессе становления такой составной живой системы часть генетической информации митохондрий и пластид могла изменяться, перенестись в ядро. Так, например две трети из 60 рибосомных белков хлоропластов кодируется в ядре и синтезируются в цитоплазме, а потом встраивается в рибосомы хлоропластов, имеющие все свойства прокариотических рибосом. Такое перемещение большой части прокариотических генов в ядро привело к тому, что эти клеточные органеллы, сохранив часть былой автономии, попали под контроль клеточного ядра, определяющего в большей степени все главные клеточные функции.
Пропластиды
При нормальном освещении пропластиды превращаются в хлоропласты. Сначала они растут, при этом происходит образование продольно расположенных мембранных складок от внутренней мембраны. Одни из них простираются по всей длине пластиды и формируют ламеллы стромы; другие образуют ламеллы тилакоидов, которые выстраиваются в виде стопки и образуют граны зрелых хлоропластов. Несколько иначе развитие пластид происходит в темноте. У этиолированных проростков происходит в начале увеличение объема пластид, этиопластов, но система внутренних мембран не строит ламеллярные структуры, а образует массу мелких пузырьков, которые скапливаютсяя в отдельные зоны и даже могут формировать сложные решетчатые структуры (проламеллярные тела). В мембранах этиопластов содержится протохлорофилл, предшественник хлорофилла желтого цвета. Под действие света из этиопластов образуются хлоропласты, протохлорофилл превращается в хлорофилл, происходит синтез новых мембран, фотосинтетических ферментов и компонентов цепи переноса электронов.
При освещении клеток мембранные пузырьки и трубочки быстро реорганизуются, из них развивается полная система ламелл и тилакоидов, характерная для нормального хлоропласта.
Лейкопласты отличаются от хлоропластов отсутствием развитой ламеллярной системы (рис. 226 б). Встречаются они в клетках запасающих тканей. Из-за их неопределенной морфологии лейкопласты трудно отличить от пропластид, а иногда и от митохондрий. Они, как и пропластиды, бедны ламеллами, но тем не менее способны к образованию под влиянием света нормальных тилакоидных структур и к приобретению зеленой окраски. В темноте лейкопласты могут накапливать в проламеллярных телах различные запасные вещества, а в строме лейкопластов откладываются зерна вторичного крахмала. Если в хлоропластах происходит отложение так называемого транзиторного крахмала, который присутствует здесь лишь во время ассимиляции СО2, то в лейкопластах может происходить истинное запасание крахмала. В некоторых тканях (эндосперм злаков, корневища и клубни) накопление крахмала в лейкопластах приводит к образованию амилопластов, сплошь заполненных гранулами запасного крахмала, расположенных в строме пластиды (рис. 226в).
Другой формой пластид у высших растений является хромопласт, окрашивающийся обычно в желтый свет в результате накопления в нем каротиноидов (рис. 226г). Хромопласты образуются из хлоропластов и значительно реже их лейкопластов (например, в корне моркови). Процесс обесцвечивания и изменения хлоропластов легко наблюдать при развитии лепестков или при созревании плодов. При этом в пластидах могут накапливаться окрашенные в желтый цвет капельки (глобулы) или в них появляются тела в форме кристаллов. Эти процессы сопряжены с постепенным уменьшением числа мембран в пластиде, с исчезновением хлорофилла и крахмала. Процесс образования окрашенных глобул объясняется тем, что при разрушении ламелл хлоропластов выделяются липидные капли, в которых хорошо растворяются различные пигменты (например, каротиноиды). Таким образом, хромопласты представляют собой дегенерирующие формы пластид, подвернутые липофанерозу – распаду липопротедных комплексов.

Пластиды. Клеточный центр. Органеллы движения

Пластиды

Пластиды свойственны лишь растительным клеткам. Они образуются у высших растений из пропластид – мелких телец меристематической зоны растений, круженных двойной мембраной, из которой в будущем сформируется оболочка пластиды.

Хлоропласты – это пластиды, содержащие хлорофилл и каротиноиды и способные к фотосинтезу. Расположены в основном в листьях растений. У высших растений на срезах хлоропласты обычно имеют вид двояковыпуклой линзіы а сверху - округлые.

Диаметр хлоропластов около 3-10 мкм (в среднем 5 мкм), потому их хорошо видно в световой микроскоп.

Хлоропласты всегда содержат хлорофилл и другие пигменты, участвующие в процессе фотосинтеза. Они локализированны в системе мембран, которые погружены в основное вещество хлоропласта – строму.

Мембранная система – это то место, где осуществляется световая фаза фотосинтеза. Мембраны содержат хлорофилл и другие пигменты, ферменты.

Вся система образована большим количеством плоских мешочков, заполненных жидкостью – тилакоидами. Тилакоиды собраны в кучки – граны. Отдельные граны соединены друг с другом ламелами. Каждая грана похожа на кучку сложенных столбиком монет, а ламелы имеют вид или разветвлённых канальцев, или плоских удлинённых складок. В строме хлоропласта есть рибосомы, молекулы ДНК, зёрна крахмала, капли жира.

Готовые работы на аналогичную тему

Замечание 1

Одной из интересных особенностей у хлоропластов, кроме их способности к фотосинтезу, есть ещё одна интересная особенность - наличие системы, синтезирующей белки.

Хромопласты – это окрашенные пластиды, неспособные к фотосинтезу, которые содержат в основном красные, жёлтые и оранжевые пигменты (каротиноиды).Больше всего хромопластов в плодах и цветах.

Замечание 2

Оранжевый пигмент, от которого зависит окраска корня моркови, также находится в хромопластах.

Лейкопласты – это бесцветные пластиды, не содержащие пигментов. Они приспособлены для сохранения питательных веществ, потому их особенно много в запасающих органах растений – семенах, корнях, а также в молодых листьях. Амилопласты запасают крахмал, липидоплатиды – липиды в виде масел или жиров, протеинопласты – белки.

В 60-х годах $XX$ ст. было установлено, что в хлоропластах и митохондриях есть ДНК и рибосомы. На основании этого была выдвинута гипотеза о том, что в тех клетках, где есть эти органеллы, они могут быть полностью или частично независимыми от клеточного ядра. Было высказано предположение, что митохондрии и хлоропласты – это прокариотические организмы, которые вошли в клетки эукариот на ранних этапах эволюции жизни. Согласно с теорией эндосимбиоза, эти органеллы воплощают крайнюю форму симбиоза.

Клеточный центр

В клетках животных возле ядра расположена органелла, которую называют клеточным центром.

Основную часть клеточного центра составляют два маленьких тельца – центриоли, расположенные в небольшом участке уплотнённой цитоплазмы

Каждая центриоля имеет форму цилиндра длиной до 1 мкм.

Центриоли выполняют важную роль в делении клетки: они участвуют в образовании веретена деления.

Органеллы движения

Псевдоподии (ложноножки) – амёбообразные временные выпячивания цитоплазмы некоторых простейших (амёб, радиолярий) или клеток многоклеточных организмов (лейкоцитов).

Псевдоподии образуются благодаря движению цитоплазмы. В основе амебоидного движения – движение молекул сократительных белков. Кроме движения клеток, псевдоподии обеспечивают также процесс фагоцитоза - захват твёрдых питательных частиц.

Жгутики и реснички – нитевидные выросты клеточной поверхности.

Реснички обычно имеют в немного меньшую длину, чем жгутики, - она составляет до 15 мкм, тогда как у жгутиков – до 50-100 мкм.

С помощью электронного микроскопа установлено, что они имеют общую основную структуру:

  • девять пар микротрубочек, расположенных кольцеобразно,
  • две одиночные микротрубочки в центре.

В основании кольца расположено базальное тельце. У жгутиков этих телец два, а у ресничек – одно.

Жгутики двигаются волнообразно или винтообразно, осуществляется с помощью освобожденной энергии АТФ. Движения ресничек напоминают работу вёсел.

Замечание 3

Реснички помогают некоторым мелким организмам (инфузориям) двигаться в жидкой среде или образовывать у поверхности некоторых клеток поток жидкости, втягивающей за собой различные частицы.

Пример 1

Реснички клеток эпителия, выстилающих дыхательные пути, очищают воздух, проходящий по этих путях, от слизи и пыли.

Жгутики есть у многих одноклеточных организмов (хламидомонада, жгутиковые), также сперматозоидов.

Строение клетки. Митохондрии. Пластиды. Органоиды движения

На этом уроке мы продолжим изучать органоиды клетки. А именно, рассмотрим мембранные органоиды, к которым относятся митохондрии и пластиды, узнаем, как они устроены и какие функции выполняют. Также мы рассмотрим органоиды движения и типы движения клеток.

Митохондрии (см. Рис. 1) имеются во всех эукариотических клетках. Они участвуют в процессах клеточного дыхания и запасают энергию в виде макроэргических связей молекулы АТФ, то есть в доступной форме для большинства процессов, связанных с затратой энергии в клетке.

Впервые митохондрии в виде гранул в мышечных клетках наблюдал в 1850 г. Р. Кёлликер (швейцарский эмбриолог и гистолог). Позднее, в 1898 г., Л. Михаэлис (германский биохимик и химик-органик) показал, что они играют важную роль в дыхании.

Рис. 1. Митохондрии

Число митохондрий в клетках не постоянно, оно зависит от вида организма и типа клетки. В клетках, потребность которых в энергии велика, содержится много митохондрий (в одной печеночной клетке их может быть около 1000), в менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируются также размеры и формы митохондрий. Они могут быть спиральными, округлыми, вытянутыми и разветвленными. Их длина колеблется от 1,5 мкм до 10 мкм, а ширина – от 0,25 до 1 мкм. В более активных клетках митохондрии крупнее.

Митохондрии способны изменять свою форму, а некоторые могут перемещаться в более активные участки клетки. Такое перемещение способствует накоплению митохондрий в тех местах клетки, где выше потребность в АТФ.

Каждая митохондрия окружена оболочкой, состоящей из двух мембран (см. Рис. 2). Наружную мембрану отделяет от внутренней небольшое расстояние (6-10 нм) – межмембранное пространство. Внутренняя мембрана образует многочисленные гребневидные складки – кристы. Кристы существенно увеличивают поверхность внутренней мембраны. На кристах происходят процессы клеточного дыхания, необходимые для синтеза АТФ. Митохондрии являются полуавтономными органеллами, содержащими компоненты, которые необходимы для синтеза собственных белков. Внутренняя мембрана окружает жидкий матрикс, в котором находятся белки, ферменты, РНК, кольцевые молекулы ДНК, рибосомы.

Рис. 2. Структура митохондрии

Митохондриальные заболевания – это группа наследственных заболеваний, связанных с дефектами функционирования митохондрий, а, следовательно, с нарушениями энергетических функций в клетках эукариот, в частности человека.

Митохондриальные заболевания передаются детям обоих полов по женской линии, поскольку зиготе от сперматозоида передается одна половина ядерного генома, а от яйцеклетки – вторая половина ядерного генома и митохондрии.

Эффекты таких заболеваний очень разнообразны. Из-за различного распределения дефектных митохондрий в разных органах у одного человека это может привести к заболеванию печени, у другого – к заболеванию мозга, причем болезнь может нарастать с течением времени. Небольшое количество дефектных митохондрий в организме может привести  лишь к неспособности человека выдерживать физическую нагрузку, соответствующую его возрасту.

В общем случае митохондриальные заболевания проявляются серьезнее при локализации дефектных митохондрий в мозге, мышцах, клетках печени, так как эти органы требуют большого количества энергии для выполнения своих функций.

В настоящее время лечение митохондриальных заболеваний находится в стадии разрабо

Строение и функция лейкопластов в клетке :: SYL.ru

Характеристика и функции лейкопластов в клетке, их роль среди хлоропластов и хромопластов, краткий обзор всех пластид - ключевые пункты, которые будут рассмотрены в данной статье.

Пластиды

Пластидами (греч. plastos - "вылепленный") называют органоиды мембран, присущие эукариотам-автотрофам, питающимся с помощью фотосинтеза - "зеленым" одноклеточным, низшим водорослям (у них пластиды именуются хроматрофами), высшим растениям. Они, как и митохондрии, окружены парой мембран, имеют свои ДНК и РНК. Их основное предназначение - жизнеобеспечение растительной клетки энергией путем синтеза органических веществ.

Все разновидности пластидов, по сути, - это жизненный путь одного органоида. Полным их набором могут похвастаться высшие зеленые растения, однако в одной клетке не может быть больше одного вида этих органелл.

Типы пластид

Существует три типа пластид: лейкопласты, хлоропласты и хромопласты. Как уже говорилось, они "превращаются" одна в другую. Трансформация лейкопластов в хлоропласты знаменуется окраской организма в зеленый цвет, а хлоропластов в хромопласты - пожелтением. Далее мы подробно остановимся на описании лейкопластов, а здесь кратко охарактеризуем остальные пластиды:

  • Хлоропласты - пластиды, содержащие хлорофилл. Это пигмент зеленого цвета, поэтому растения, его содержащие, имеют такую же окраску. Хлоропласт - это округлая органелла размером 4-10 мкм. Она наполовину состоит из белка, на 35 % из жиров, на 7 % из пигмента, остальное приходится на РНК и ДНК.
  • Хромопласты. Эти органоиды могут быть и игольчатыми, и округлыми, и многоугольными. Тельца содержат желтые, красные, оранжевые пигменты - каротиноиды. Именно они - причина окраски осенних листьев, цветов, зрелых фруктов.

Кроме этих основных единиц, также выделяют:

  • Пропластиды - предшественники пластид мельчайших размеров (0,2-1 мкм). Иногда содержат фитоферритин - белок, сохраняющий ионы железа.
  • Амилопласты - имеют некоторое сходство с пропластидами, однако отличаются от них содержанием частиц крахмала. Их функция - запас питательных веществ (например, в клубнях картофеля). Так же, как и лейкопласты, могут обращаться в хлоропласты и хромопласты.
  • Протеинопласты - их предназначением является хранение белков.
  • Этиопласты - образуются из пропластид в темновой фазе, при свете трансформируются в хлоропласты.
  • Элайопласты запасают в организме растения жиры.

Происхождение

История возникновения пластид, опять же, схожа с историей митохондрии. Считается, что они появились в результате "взятия в плен" предком клетки-эукариота цианобактерии. Внешняя мембрана лейкопластов и прочих пластид схожа с мембраной "захватчика", внутренняя мембрана и строма - с цитоплазмой и мембраной цианобактерии.

Размножение лейкопластов и прочих пластид

Пластиды "рождаются" путем деления. Чаще всего размножаются пропластиды, хлоропласты и этиопласты. Подобная функция лейкопластов развита слабо. Путь их размножения схож с делением прокариотов. Сначала они сжимаются в центре, потом проявляется перетяжка между дочерними пластидами, которая прогрессирует до полного разделения.

Интересно, что наследование пластид не у всех растений происходит одинаково:

  • по "отцовской" линии: некоторые голосемянные - саговники, гинкго;
  • по "материнской" линии: подавляющая часть цветковых;
  • наследование от обоих "родителей": ослинник, свинчатка, герань.

Строение лейкопластов

Перед тем как разобрать, какую функцию выполняют лейкопласты, подробно остановимся на их строении.

Эти органоиды - бесцветные пластиды относительно небольших размеров, не имеющие в своем составе пигментов. Присутствуют в живых клетках растений - в запасающих тканях. Форма их бывает самой разной: округлая, слегка продолговатая, амебоидная, эллипсоидная, шаровидная, гантелевидная. В процессе изготовления препаратов лейкопласты легко теряют свою форму при незначительном повреждении, расплываются. Их бывает трудно отличить от пропластид и от митохондрий, т. к. они не имеют ярко выраженных особенностей строения.

Если разглядывать лейкопласт под электронным микроскопом, нельзя не заметить, что он покрыт двумя слоями мембраны, а в строме заметно несколько выростов. Внешняя часть мембраны гладкая, а внутренняя покрыта незначительным количеством тилакоидов. Все остальное пространство органеллы заполнено органическими веществами. От веществ, которые "хранятся" в строме, зависит тип и функция лейкопластов: элеопласты, протеинопласты, амилопласты. Обычно строма содержит рибосомы типа 70-S, кольцевую ДНК, ферменты гидролиза и синтеза веществ.

Также лейкопласты, в отличие от хлоропластов, не имеют ламеллярной системы. Но при этом на свету способны образовывать нормальные тилакоидные структуры, тем самым обретая зеленый окрас и "обращаясь" в хлоропласты. В темноте же они накапливают различные питательные элементы в проламеллярных образованиях и гранулы крахмала в строме. В клубнях и корневищах, эндосперме злаковых лейкопласты выполняют функцию амилопластов, заполнив целиком строму "запасными" крахмальными зернами.

Какую функцию выполняют лейкопласты?

Лейкопласты (греч. "белый" + "вылепленный") имеют в своем составе ферменты, позволяющие из глюкозы, полученной в результате фотосинтеза, получить крахмал. Основная функция лейкопластов напрямую связана с этой их особенностью - они синтезируют и накапливают в себе питательные вещества. А чаще всего образуют крахмал из поступающей к ним глюкозы. Затем это вещество откладывается в их строме. Крахмал, содержащийся в лейкопластах, именуют вторичным. Первичный содержится в хлоропластах, образуясь в процессе фотосинтеза.

Кроме накопления крахмала, функция лейкопластов может состоять и в накоплении других веществ - белков, жиров, масел. Как уже говорилось, она влияет на то, как эти органеллы будут называться - амилопластами, протеинопластами или элайопластами. Важно отметить, что в клетке растения могут одновременно содержаться лейкопласты всех этих типов.

Вот и все, что мы хотели рассказать про лейкопласты, строение и функции этих органелл, а также про их общие с иными пластидами (хлоропластами, хромопластами, пропластидами и др.) качества.

Пластиды растительной клетки: общие сведения

Пластиды растительной клетки: общие сведения

Пластида (plastid): самореплицирующаяся цитоплазматическая органелла клеток растений, содержащая собственную ДНК и рибосомы. 

Это бесцветные или окрашенные тельца в протоплазме растительных клеток, представляющие собой сложную систему внутренних мембран (мембранные органеллы) и выполняющие различные функции. Бесцветные пластиды называют лейкопластами , различно окрашенные (желтого, оранжевого или красного цвета) - хромопластами , зеленые - хлоропластами . В клетке высших растений содержится около 40 хлоропластов в которых происходит фотосинтез. Они, как уже было сказано, способны к автономному размножению, не зависящему от деления клетки. Размеры и форма митохондрий и хлоропластов, наличие в их матриксе кольцевых двухцепочных ДНК и собственных рибосом делают эти органеллы похожими на бактериальные клетки. Существует теория симбиотического происхождения эукариотической клетки , согласно которой предки современных митохондрий и хлоропластов были когда-то самостоятельными прокариотическими организмами.

Пластиды характерны только для растений. Они не найдены у грибов и у большинства животных, исключая некоторых фотосинтезирующих простейших.

Предшественниками пластид являются пропластиды , мелкие, обычно бесцветные образования, находящиеся в делящихся клетках корней и побегов . Если развитие пропластид в более дифференцированные структуры задерживается из-за отсутствия света, в них может появиться одно или несколько проламеллярных телец (скопления трубчатых мембран). Такие бесцветные пластиды называются этиопластами . Этиопласты превращаются в хлоропласты на свету, а из мембран проламеллярных телец формируются тилакоиды . В зависимости от окраски, связанной с наличием или отсутствием тех или иных пигментов, различают три основных типа пластид (см. выше) - хлоропласты, хромопласты и  лейкопласты. Обычно в клетке встречаются пластиды только одного типа. Однако установлено, что одни типы пластид могут переходить в другие.

Пластиды - относительно крупные образования клетки. Самые большие из них - хлоропласты - достигают у высших растений 4-10 мкм длины и хорошо различимы в световой микроскоп. Форма окрашенных пластид чаще всего линзовидная или эллиптическая. В клетках встречаются, как правило, несколько десятков пластид, но у водорослей, где пластиды нередко крупны и разнообразны по форме, число их иногда невелико (1-5). Такие пластиды называются хроматофорами . Лейкопласты и хромопласты могут иметь различную форму.

Хлоропласты встречаются во всех зеленых органах растений, лейкопласты весьма обычны в клетках органов, скрытых от солнечного света, - корнях, корневищах, клубнях, а также в ситовидных элементах некоторых покрытосеменных. Хромопласты содержатся в клетках лепестков многих растений, зрелых окрашенных плодах (томаты, шиповник, рябина), иногда - в корнеплодах (морковь).

Строение пластид может быть рассмотрено на примере хлоропластов ( рис. 10 ). Они имеют оболочку, образованную двумя мембранами: наружной и внутренней. Внутренняя мембрана вдается в полость хлоропласта немногочисленными выростами. Мембранная оболочка отграничивает от гиалоплазмы клетки матрикс хлоропласта, так называемую строму. Как строма, так и выросты внутренней мембраны формируют в полости хлоропласта сложную систему мембранных поверхностей, отграничивающих особые плоские мешки, называемые тилакоидами, или ламеллами . Группы дисковидных тилакоидов связаны друг с другом таким образом, что их полости оказываются непрерывными. Эти тилакоиды образуют стопки (наподобие стопки монет), или граны . Тилакоиды стромы объединяют граны между собой. В мембранах тилакоидов сосредоточен главнейший пигмент зеленых растений - хлорофилл и вспомогательные пигменты - каротиноиды . Внутренняя структура хромопластов и лейкопластов проще. Граны в них отсутствуют.

В строме хлоропластов содержатся ферменты и рибосомы , отличающиеся от рибосом цитоплазмы меньшими размерами. Часто имеются один или несколько небольших зерен первичного ассимиляционного крахмала . Генетический аппарат хлоропластов автономен, они содержат свою собственную ДНК .

Основная функция хлоропластов - фотосинтез. Центральная роль в этом процессе принадлежит хлорофиллу , точнее - нескольким его модификациям. Световые реакции фотосинтеза осуществляются преимущественно в гранах , темновые - в строме хлоропласта . И хлоропласты , и митохондрии способны синтезировать собственные белковые молекулы, так как обладают собственной ДНК .

Помимо фотосинтеза, в хлоропластах осуществляется синтез АТФ и АДФ (фосфорилирование), синтез и гидролиз липидов , ассимиляционного крахмала и белков , откладывающихся в строме.

В лейкопластах пигменты отсутствуют, но здесь может осуществляться синтез и накопление запасных питательных веществ, в первую очередь крахмала , иногда белков , редко жиров . Очень часто в лейкопластах формируются зерна вторичного запасного крахмала .

Красноватая или оранжевая окраска хромопластов связана с присутствием в них каротиноидов . Считается, что хромопласты - конечный этап в развитии пластид, иначе говоря, это стареющие хлоропласты и лейкопласты . Наличие хромопластов отчасти определяет яркую окраску многих цветков, плодов и осенних листьев.

Ссылки:

Пластиды ☑️ определение, особенности строения и структура, функции, виды органоидов, взаимопревращения, роль и значение хлоропластов, лейкоцитов и хромопластов в биологии

Описание органоидов

Пластиды образуются из молодых зачаточных клеток, которые называются пропластидами. Они имеют округлую форму и обладают двумя мембранами, которые заполнены однородным веществом (матриксом). В матриксе находятся:

  • кольцевая дезоксирибонуклеиновая кислота;
  • прокариотические мелкие рибосомы;
  • геном органоидов.

Пропластиды попадают в новый органоид через яйцеклетку, и они могут делиться, образуя все типы органелл. Каждый вид пластид отличается от другого формой, строением и размерами. Обычные органоиды высших растений окружены внешней и внутренней оболочками, в которых число галактолипидов преобладает над количеством фосфолипидов.

Внешняя мембрана имеет гладкую форму, и она никогда не соединяется с внутренней. В строении пластид ее функцией считается транспортировка воды, ионов и метаболитов. Этот процесс осуществляется благодаря наличию порового белка.

Между мембранами есть точки тесного взаимодействия, и биологи предполагают, что в этих местах происходит переход белков из цитоплазмы. Внутренняя мембрана способна пропускать маленькие незаряженные молекулы и монокарбоновые кислоты.

Крупные и заряженные продукты метаболизма перемещаются белками переносчиками. Пластиды развиваются за счет везикул, которые отсоединяются от внутренней мембраны и упорядочиваются. Уровень развития зависит от видов органоидов.

Размножение и разновидности органелл

Размножение пластид происходит делением развитых органоидов. В образовательных тканях деление органелл и клеток взаимосвязано, поэтому количество пластид в материнских и дочерних клетках практически одинаковое.

Сам же процесс размножения сходен с делением прокариотических клеток, то есть в ее центральной части происходит сжатие, потом образуется перетяжка между новыми образованиями и затем полное разделение. Чаще всего делятся:

  • пропластиды;
  • этиопласты;
  • молодые хлоропласты.

Большинство видов цветов во время размножения приобретает характеристики материнского растения, так как мужские клетки часто деградируют в период развития гаметофита или двойного оплодотворения. У некоторых растений были замечены признаки наследования от обоих родителей, а иногда встречаются экземпляры с отцовскими характерными чертами. Пластиды наземных растений осуществляют ряд функций:

  • фотосинтез;
  • восстановление неорганических ионов;
  • синтез основных метаболитов и регулярных молекул;
  • накопление железа, липидов и крахмала.

Сводная таблица основных видов пластид:

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранный органоид с гранами и каналами Органелла с неразвитой внутримембранной системой Органоиды, находящиеся в частях растений, спрятанных от света
Цвет Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Овальная Многоугольная Шаровидная
Функции Фотосинтез Накопление каротиноидов Накопление питательных веществ
Преобразование Переходят в хромопласты Не преобразовываются Становятся хролопластами и хромопластами

Роль хлоропластов

Этот класс пластидов считается самым изученным и важным в растительном мире. Органоид содержит пигмент хлорофилл, который окрашивает представителей растительного мира в зеленый цвет, кроме некоторых сапрофитов, паразитов и растений, содержащихся в темном месте.

Объясняется это тем, что синтез может протекать только на свету, а на неосвещенных участках растения обладают бледно-желтой окраской. Поэтому на рисунках растительных клеток эти органеллы всегда изображаются зеленым цветом. В структуру хлоропласта входят:

  • белки — около 50%;
  • хлорофиллы — от 5 до 10%;
  • каротиноиды — от 1 до 2%;
  • рибонуклеиновые кислоты (РНК) — от 0,5 до 3%.

Исключительная особенность этих органоидов в том, что в них протекает фотосинтез, образующий крахмал, который представляет собой мелкие зерна. В процессе синтеза хлорофилл поглощает световую энергию и перенаправляет ее на фотосинтетические реакции. Из органоидов хролофилл извлекается с помощью органических растворителей (спирт, ацетон).

Значение каротиноидов в хлоропластах еще не совсем доказано, но специалисты предполагают, что ими также поглощается и накапливается световая энергия, а затем передается хролофиллам. Хлоропласты отличаются от других органелл постоянством форм и размеров, независимо от вида растений.

Исключение составляют некоторые тенелюбивые растения, у которых количество и форма пластид чуть больше. Этот вид органоидов считается очень слабым, поэтому при взаимодействии с дистиллированной водой или раствором соли они быстро разбухают и расплываются. Такие изменения обычно происходят при малом количестве минеральных элементов в почве.

Но в природе встречаются и более стойкие хлоропласты, которые могут длительный период переносить низкие температуры. Например, кора осины начинает зеленеть ранней весной, когда по ночам бывают сильные заморозки. Крепкие органоиды входят в структуру клеток большинства хвойных пород деревьев, поэтому иголки у них постоянно зеленые.

Бесцветные лейкопласты

Такие пластиды в биологии представляют собой бесцветные органоиды, поэтому их очень сложно обнаружить даже в микроскоп. Обычно они становятся видны, если внутри есть большие включения. Это очень нежные пластиды и разрушаются быстрее, чем хлоропласты. Чаще всего бесцветные органеллы встречаются в частях растений, находящихся в темноте:

  • в корневой системе;
  • в клубнях картофеля;
  • в семенах;
  • в середине стеблей.

Кроме того, лейкопласты могут встречаться в сильно освещенных клетках растений, например, в кожице. В схеме клетки органеллы обычно располагаются рядом с ядром, нередко окружая его со всех сторон. В отличие от хролопластов, форма этих органоидов изменчива, и она может быть шаровидной, овальной или веретеновидной. В состав лейкопластов входят три вида органелл, которые выполняют определенные функции. В бесцветные органоиды входят:

  • амилопласты;
  • протеопласты;
  • олеопласты.

Среди всех видов лейкопластов преобладают амилопласты, которые предназначены для накапливания крахмала. Выяснить их строение очень сложно, так как даже использование микроскопа не позволяет изучить структуру этих органелл. Образование крахмальных зерен происходит посередине пластиды, и этот участок называется образовательным центром.

При особых условиях происходит взаимопревращение амилопласт с другими видами пластид. Олеопласты, которые образуют в клетках масла, встречаются намного реже, чем амилопласты. По определению эти пластиды представляют собой застарелые хлоропласты, которые потеряли хлорофилл.

При этом внутри матрикса происходит образование масла, которое после разрыва оболочки вытекает и сливается с маслами других пластид, образуя крупные жировые капли. В протеопластах происходит синтез дополнительного белка (протеина), который образуется в семенах разных растений.

Назначение хромопластов

Разноцветные хромопласты находятся в клетках многих лепестков, спелых плодов, фруктов и корнеплодов. Окраска этих органов обусловлена наличием в пластидах желтых и оранжевых пигментов.

Их также можно встретить в хлоропластах, но там они перекрываются хлорофиллом. Форма разноцветных органоидов непостоянна и зависит от состояния пигментов. В зависимости от строения каротиноидов существует три вида хромопластов:

  1. Пластиды, у которых каротиноиды обладают формой кристаллов.
  2. Органоиды с растворенными в липоидных глобулах пигментами.
  3. Органеллы, где каротиноиды находятся в мелких пучках нитей и связаны с фибриллами белка.

Хромопласты обычно образуются из старых хлоропластов, за исключением моркови, где они развиваются из пропластид. Поэтому часть его плода, подпадающая под солнечные лучи, начинает зеленеть. Органоиды в моркови образовываются из крахмалоносных лейкопластов, а затем появляются каротиноиды, которые постепенно кристаллизуются.

С ростом в клетках каротина крахмал исчезает, а пластидная масса уменьшается. Кристаллизованный пигмент занимает большую часть хромопласта, поэтому форма органоида напрямую зависит от пигмента.

Роль хромопластов в обмене веществ еще мало изучена. Они не обладают способностью к фотосинтезу, так как в них нет хролофилла. Побочное значение этого органоида состоит в том, что они обеспечивают окраску цветов и плодов, которые привлекают разных насекомых для опыления.



Смотрите также

Описание: