Гладкая мускулатура человека где находится


Гладкие мышцы — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 7 июня 2019; проверки требует 1 правка. Гладко-мышечная ткань, гематоксилин-эозин.

Гладкие мышцы — сократимая ткань, в отличие от поперечнополосатых мышц не имеющая поперечной исчерченности.

Гладкие мышцы у беспозвоночных и позвоночных[править | править код]

У некоторых беспозвоночных гладкие мышцы образуют всю мускулатуру тела. У позвоночных они входят в состав оболочек внутренних органов: кишечника, кровеносных сосудов, дыхательных путей, выделительных и половых органов, а также многих желёз. Клетки гладких мышц у беспозвоночных разнообразны по форме и строению; у позвоночных в большинстве случаев веретенообразные, сильно вытянутые, с палочковидным ядром, длиной 50—250 мкм, в матке беременных животных — до 500 мкм; окружены волокнами соединительной ткани, образующими плотный футляр.

Сократимый материал — протофибриллы — обычно располагается в цитоплазме изолированно; только у некоторых животных они собраны в пучки — миофибриллы. В гладких мышцах найдены все три вида сократимого белка — актин, миозин и тропомиозин. Преимущественно встречаются протофибриллы одного типа (диаметром около 100 мкм).

Клеточных органоидов (митохондрии, комплекс Гольджи, элементы эндоплазматического ретикулума) в гладких мышцах меньше, чем в поперечнополосатой мускулатуре. Они располагаются преимущественно на полюсах ядра в цитоплазме, лишённой сократимых элементов. Клеточная мембрана часто образует карманы в виде пиноцитозных пузырьков, что указывает на резорбцию и всасывание веществ поверхностью клетки.

Установлено, что гладкие мышцы — группа различных по происхождению тканей, объединяемых единым функциональным признаком — способностью к сокращению. Так, у беспозвоночных гладкие мышцы развиваются из мезодермальных листков и целомического эпителия. У позвоночных гладкие мышцы слюнных, потовых и молочных желёз происходят из эктодермы, гладкие мышцы внутренних органов — из мезенхимы и т. д. Соседние клетки гладких мышц контактируют друг с другом отростками так, что мембраны двух клеток соприкасаются. В мышцах кишечника мышцы зоны контакта занимают 5 % поверхности клеточной мембраны. Здесь, вероятно, происходит передача возбуждения от одной клетки к другой (см. Синапсы).

В отличие от поперечнополосатых мышц, для гладких мышц характерно медленное сокращение, способность долго находиться в состоянии сокращения, затрачивая сравнительно мало энергии и не подвергаясь утомлению. Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная — отростками клеток спинальных ганглиев. Не каждая клетка гладких мышц имеет специализированное нервное окончание.

Скелетная мышечная ткань — Википедия

Схема скелетной мышцы в разрезе. Строение скелетной мышцы

Скелетная (поперечнополосатая) мышечная ткань — упругая, эластичная ткань, способная сокращаться под влиянием нервных импульсов: один из типов мышечной ткани. Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70—75 % из воды.

Источником развития скелетной мускулатуры являются клетки миотомов — миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты — мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл, постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-сателлитов), покрытых общей базальной мембраной. Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50—100 микрометров.

Скелетные мышцы прикреплены к костям или друг к другу крепкими, гибкими сухожилиями.

Строение миосимпласта[править | править код]

Миосимпласт представляет собой совокупность слившихся клеток. В нем имеется большое количество ядер, расположенных по периферии мышечного волокна (их число может достигать десятков тысяч). Как и ядра, на периферии симпласта расположены другие органеллы, необходимые для работы мышечной клетки — эндоплазматическая сеть (саркоплазматический ретикулюм), митохондрии и др. Центральную часть симпласта занимают миофибриллы. Структурная единица миофибриллы — саркомер. Он состоит из молекул актина и миозина, именно их взаимодействие и обеспечивает изменение длины мышечного волокна и как следствие сокращение мышцы. В состав саркомера входят также многие вспомогательные белки — титин, тропонин, тропомиозин и др[1].

Строение миосателлитов[править | править код]

Миосателлиты — одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

Функциональной единицей скелетной мышцы является моторная единица (МЕ). МЕ включает в себя группу мышечных волокон и иннервирующий их мотонейрон. Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют мотонейроны, иннервирующие данные МЕ. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR-мотонейроны (FR-МН).

S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро. Такая способность обуславливается наличием миоглобина и большого числа митохондрий. МЕ красных мышц, как правило, содержат большое количество мышечных волокон.

FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путём окислительного фосфорилирования. Как правило, число волокон в FR-ME меньше, чем в S-ME.

Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза. В них отсутствует миоглобин, поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция[править | править код]

Скелетные мышцы обеспечивают возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным — так называемая точка фиксации (лат. púnctum fíxum), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Двигающуюся точку прикрепления мышцы называют подвижной точкой (лат. púnctum móbile). В некоторых случаях, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile, и наоборот.

  • Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский. Гистология. — 5-е изд., перераб. и доп.. — Москва: Медицина, 2002. — 744 с. — ISBN 5-225-04523-5.
  • [1]- Механизмы развития мышечной ткани (англ.)

Гладкая мускулатура - это... Что такое Гладкая мускулатура?


Гладкая мускулатура

Wikimedia Foundation. 2010.

  • Гладкий, Осип
  • Гладкая шпорцевая лягушка

Смотреть что такое "Гладкая мускулатура" в других словарях:

  • Висцеральная мускулатура —         мускулатура внутренних органов у человека, позвоночных и бесчерепных животных. К В. м. относятся мышцы кожи и кожных желёз, стенок кровеносных сосудов, выводных протоков мочеполовой системы, кишечника, глотки и сердца. В. м. в основном… …   Большая советская энциклопедия

  • ВИСЦЕРАЛЬНАЯ МУСКУЛАТУРА — мускулатура внутр. органов хордовых. Происходит из висцерального листка боковых пластинок (нек рые мышцы из эктодермы и дерматома). Составляет часть мышечной системы и противопоставляется париетальной мускулатуре. К В. м. относятся мышцы кожи и… …   Биологический энциклопедический словарь

  • ВИСЦЕРАЛЬНАЯ МУСКУЛАТУРА — [см. висцеральный; от лат. muskulus мышца] гладкие мышцы кожи и кожных желез, внутренних органов, мышечный слой стенок желудка, кровеносных сосудов, выводных протоков мочеполовой системы, кишечника, глотки, сердца; В. м. в осн. гладкая, в сердце… …   Психомоторика: cловарь-справочник

  • МЫШЕЧНАЯ СИСТЕМА — МЫШЕЧНАЯ СИСТЕМА. Содержание: I. Сравнительная анатомия..........387 II. Мышцы и их вспомогательные аппараты . 372 III. Классификация мышц............375 IV. Вариации мышц...............378 V. Методика исследования мышц на хрупе . . 380 VI.… …   Большая медицинская энциклопедия

  • Опорно-двигательный аппарат — состоит из костного скелета и мышц. Мышцы человека делятся на три вида: гладкая мускулатура внутренних органов и сосудов, характеризующаяся медленными сокращениями и большой выносливостью; поперечнополосатая мускулатура сердца, работа которой не… …   Педагогическая энциклопедия «Воспитание здорового образа жизни учащихся»

  • ЭРЕКЦИЯ — (erectio от лат. erigere поднимать) мужского полового члена заключается в увеличении его объема в сравнении с обычным и отвердении его, благодаря чему половой член делается способным раздвигать у женщины срамные губы и стенки влагалища и почти… …   Большая медицинская энциклопедия

  • боковые пластинки — (спланхнотомы), парные двуслойные части боковой мезодермы у зародышей хордовых животных. Из боковых пластинок образуются серозные оболочки, гладкая мускулатура, мезенхима, кровеносные сосуды, сердце, брыжейка. * * * БОКОВЫЕ ПЛАСТИНКИ БОКОВЫЕ… …   Энциклопедический словарь

  • ГОЛОС — ГОЛОС, всеобщее понятие, объединяющее звуки, исходящие из гортани человека, независимо от того, предназначаются ли они для выражения мысли и чувства или же являются в результате неосознанных рефлекторных мышечных движений. В развитии Г. должно… …   Большая медицинская энциклопедия

  • ПИЛОКАРПИН — (Pilocarpinum), алкалоид, который содержится в листьях яборанди (Folia Jaborandi, s. Folia Pilocarpi). Яборанди является туземным названием в Бразилии для различных растений семейства рутовых (Rutaceae Rutoideae Cusparieae), а именно: Pilocarpus… …   Большая медицинская энциклопедия

  • Мочеиспускание — I Мочеиспускание (mictio) периодически наступающий рефлекторный акт выделения определенного количества мочи по уретре. У взрослого человека М. произвольно контролируемый процесс, являющийся конечным этапом транспорта мочи из организма. При… …   Медицинская энциклопедия

Гладкие мышцы - это... Что такое Гладкие мышцы?

Гладко-мышечная ткань, гематоксилин-эозин.

Гладкие мышцы — сократимая ткань, состоящая, в отличие от поперечнополосатых мышц, из клеток (а не синцития) и не имеющая поперечной исчерченности.

Гладкие мышцы у беспозвоночных и позвоночных

У некоторых беспозвоночных гладкие мышцы образуют всю мускулатуру тела. У позвоночных они входят в состав оболочек внутренних органов: кишечника, кровеносных сосудов, дыхательных путей, выделительных и половых органов, а также многих желёз. Клетки гладких мышц у беспозвоночных разнообразны по форме и строению; у позвоночных в большинстве случаев веретенообразные, сильно вытянутые, с палочковидным ядром, длиной 50—250 мкм, в матке беременных животных — до 500 мкм; окружены волокнами соединительной ткани, образующими плотный футляр.

Сократимый материал

Сократимый материал — протофибриллы — обычно располагается в цитоплазме изолированно; только у некоторых животных они собраны в пучки — миофибриллы. В гладких мышцах найдены все три вида сократимого белка — актин, миозин и тропомиозин. Преимущественно встречаются протофибриллы одного типа (диаметром около 100 ).

Клеточные органоиды

Клеточных органоидов (митохондрии, комплекс Гольджи, элементы эндоплазматического ретикулума) в гладких мышцах меньше, чем в поперечнополосатой мускулатуре. Они располагаются преимущественно на полюсах ядра в цитоплазме, лишённой сократимых элементов. Клеточная мембрана часто образует карманы в виде пиноцитозных пузырьков, что указывает на резорбцию и всасывание веществ поверхностью клетки.

Различие гладких мышц

Установлено, что гладкие мышцы — группа различных по происхождению тканей, объединяемых единым функциональным признаком — способностью к сокращению. Так, у беспозвоночных гладкие мышцы развиваются из мезодермальных листков и целомического эпителия. У позвоночных гладкие мышцы слюнных, потовых и молочных желёз происходят из эктодермы, гладкие мышцы внутренних органов — из мезенхимы и т.д. Соседние клетки гладких мышц контактируют друг с другом отростками так, что мембраны двух клеток соприкасаются. В мышцах кишки мышцы зоны контакта занимают 5% поверхности клеточной мембраны. Здесь, вероятно, происходит передача возбуждения от одной клетки к другой (см. Синапсы).

Сокращения гладких мышц

В отличие от поперечнополосатых мышц, для гладких мышц характерно медленное сокращение, способность долго находиться в состоянии сокращения, затрачивая сравнительно мало энергии и не подвергаясь утомлению. Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная — отростками клеток спинальных ганглиев. Не каждая клетка гладких мышц имеет специализированное нервное окончание.

виды, свойства, особенности строения и функции

Мышечные ткани — это ткани, отличающиеся по структуре и происхождению, но имеют общую способность к сокращению. Состоят из миоцитов — клеток, которые могут воспринимать нервные импульсы и отвечать на них сокращением.

Свойства и виды мышечной ткани

Морфологические признаки:

  • Вытянутая форма миоцитов;
  • продольно размещены миофибриллы и миофиламенты;
  • митохондрии находятся вблизи сократительных элементов;
  • присутствуют полисахариды, липиды и миоглобин.

Свойства мышечной ткани:

  • Сократимость;
  • возбудимость;
  • проводимость;
  • растяжимость;
  • эластичность.

Выделяют следующие виды мышечной ткани в зависимости от морфофункциональных особенностей:

  1. Поперечнополосатая: скелетная, сердечная.
  2. Гладкая.

Гистогенетическая классификация делит мышечные ткани на пять видов в зависимости от эмбрионального источника:

  • Мезенхимные — десмальный зачаток;
  • эпидермальные — кожная эктодерма;
  • нейральные — нервная пластинка;
  • целомические — спланхнотомы;
  • соматические — миотом.

Из 1-3 видов развиваются гладкомышечные ткани, 4, 5 дают поперечнополосатые мышцы.

Строение и функции гладкой мышечной ткани

Cостоит из отдельных мелких веретеновидных клеток. Эти клетки имеют одно ядро и тонкие миофибриллы, которые тянутся от одного конца клетки к другому. Гладкие мышечные клетки объединяются в пучки, состоящие из 10-12 клеток. Это объединение возникает благодаря особенностям иннервации гладкой мускулатуры и облегчает прохождение нервного импульса на всю группу гладких мышечных клеток. Сокращается гладкая мышечная ткань ритмично, медленно и на протяжении длительного времени, способна при этом развивать большую силу без значительных затрат энергии и без утомления.

У низших многоклеточных животных из гладкой мышечной ткани состоят все мышцы, тогда как у позвоночных животных она входит в состав внутренних органов (кроме сердца).

Сокращения этих мышц не зависят от воли человека, т. е. происходят непроизвольно.

Функции гладкой мышечной ткани:

  • Поддерживание стабильного давления в полых органах;
  • регуляция уровня кровяного давления;
  • перистальтика пищеварительного тракта, перемещения по нему содержимого;
  • опорожнение мочевого пузыря.

Строение и функции скелетной мышечной ткани

Скелетная мышечная ткань

Cостоит из длинных и толстых волокон длиной 10-12 см. Скелетная мускулатура характеризуется произвольным сокращением (в ответ на импульсы, идущие из коры головного мозга). Скорость ее сокращения в 10-25 раз выше, чем в гладкой мышечной ткани.

Мышечное волокно поперечнополосатой ткани покрыто оболочкой — сарколеммой. Под оболочкой находится цитоплазма с большим количеством ядер, расположенных по периферии цитоплазмы, и сократительными нитями — миофибриллами. Состоит миофибрилла из последовательно чередующихся темных и светлых участков (дисков), обладающих разным коэффициентом преломления света. С помощью электронного микроскопа установлено, что миофибрилла состоит из протофибрилл. Тонкие протофибриллы построены из белка — актина, аболее толстые — из миозина.

При сокращении волокон происходит возбуждение сократимых белков, тонкие протофибриллы скользят по толстым. Актин реагирует с миозином, и возникает единая актомиозиновая система.

Функции скелетной мышечной ткани:

  • Динамическая — перемещение в пространстве;
  • статическая — поддержание определенной позиции частей тела;
  • рецепторная — проприорецепторы, воспринимающие раздражение;
  • депонирующая — жидкость, минералы, кислород, питательные вещества;
  • терморегуляция — расслабление мышц при повышении температуры для расширения сосудов;
  • мимика — для передачи эмоций.

Строение и функции сердечной мышечной ткани

Сердечная мышечная ткань

Миокард построен из сердечной мышечной и соединительной ткани, с сосудами и нервами. Мышечная ткань относится к поперечнополосатой мускулатуре, исчерченность которой также обусловлена наличием разных типов миофиламентов. Миокард состоит из волокон, которые связаны между собой и формируют сетку. Эти волокна включают одно или двухъядерные клетки, что расположены в виде цепочки. Они получили название сократительных кардиомиоцитов.

Сократительные кардиомиоциты длиной от 50 до 120 микрометров, шириной — до 20 мкм. Ядро здесь располагается в центре цитоплазмы, в отличие от ядер поперечно полосатых волокон. Кардиомиоциты имеют больше саркоплазма и меньше миофибрилл, в сравнении со скелетными мышцами. В клетках сердечной мышцы находится много митохондрий, так как непрерывные сердечные сокращения требуют много энергии.

Вторая разновидность клеток миокарда — это проводящие кардиомиоциты, которые формируют проводящую систему сердца. Проводящие миоциты обеспечивают передачу импульса к сократительным мышечным клеткам.

Функции сердечной мышечной ткани:

  • Насосная;
  • обеспечивает ток крови в кровеносном русле.

Компоненты сократительной системы

Особенности строения мышечной ткани обусловлены выполняемыми функциями, возможностью принимать и проводить импульсы, способностью к сокращению. Механизм сокращения заключается в согласованной работе ряда элементов: миофибрилл, сократительных белков, митохондрий, миоглобина.

В цитоплазме мышечных клеток имеются особые сократительные нити — миофибриллы, сокращение которых возможно при содружественной работе белков — актина и миозина, а также при участии ионов Са. Митохондрии снабжают все процессы энергией. Также энергетические запасы образуют гликоген и липиды. Миоглобин необходим для связывания O2 и формирование его запаса на период сокращения мышцы, так как во время сокращения идет сдавление кровеносных сосудов и снабжение мышц O2 резко снижается.

Таблица. Соответствие между характеристикой мышечной ткани и ее видом

Вид тканиХарактеристика
ГладкомышечнаяВходит в состав стенок кровеносных сосудов
Структурная единица – гладкий миоцит
Сокращается медленно, неосознанно
Поперечная исчерченность отсутствует
СкелетнаяСтруктурная единица – многоядерное мышечное волокно
Свойственна поперечная исчерченность
Сокращается быстро, осознанно

Где находится мышечная ткань?

Гладкие мышцы являются составной частью стенок внутренних органов: желудочно-кишечного тракта, мочеполовой системы, сосудов. Входят в состав капсулы селезенки, кожных покровов, сфинктера зрачка.

Скелетная мускулатуразанимают около 40% от массы тела человека, с помощью сухожилий крепятся к костям. Из этой ткани состоят скелетные мышцы, мышцы рта, языка, глотки, гортани, верхнего участка пищевода, диафрагмы, мимическая мускулатура. Также поперечно полосатые мышцы находится в миокарде.

Чем мышечное волокно скелетной мышцы отличается от гладкой мышечной ткани?

Волокна поперечнополосатых мышц намного длиннее (до 12см), чем клеточные элементы гладкомышечной ткани (0,05-0,4мм). Также скелетные волокна имеют поперечную исчерченность благодаря особому расположению нитей актина и миозина. Для гладких мышц это не характерно.

В мышечных волокнах находится много ядер, а сокращение волокон сильное, быстрое и осознанное. В отличие от гладких мышц, клетки гладкомышечной ткани одноядерные, способны сокращаться в медленном темпе и неосознанно.

Мышечные ткани, подготовка к ЕГЭ по биологии

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости.) Важнейшие функции мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, скелетная и поперечно-полосатая мышечные ткани.

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов - коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все остальные клетки.

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы внутренних органов (к примеру, мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов - миофиламентов, которые расположены в клетке хаотично и не имеют такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно. К примеру, невозможно по желанию сузить или расширить зрачок.

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными волокнами, имеющими до 100 и более ядер - миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Характерная черта данной ткани - поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы - саркомер.

Саркомер

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер - элементарная сократительная единица мышцы. Состоит из тонкого белка - актина, и толстого - миозина. Сокращение осуществляется благодаря трению нитей актина о нити миозина, в результате чего саркомер укорачивается.

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение - посмертное затвердевание мышц - связано именно с ионами кальция, которые устремляются в область низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах, в связи с чем наблюдается стойкая мышечная контрактура: конечности очень сложно разогнуть или согнуть.

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие от гладких миоцитов. Скелетные мышцы быстро утомляются и сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления растянуты во времени.)

Скелетные мышцы поддаются нашему осознанному контролю, их скоращение регулируется произвольно. К примеру, по желанию мы можем изменить скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение суставы.

Сердечная мышечная ткань

Мышечная ткань сердца - миокард (от др.-греч. μῦς «мышца» + καρδία - «сердце») - средний слой сердца, составляющий основную часть его массы.

Этот тип мышечной ткани удивительным образом сочетает характеристики двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством - автоматизмом - способностью возбуждаться и сокращаться без влияний извне, самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения сердца в нем будут продолжаться еще несколько часов.

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных клеток, которые также называют водителями ритма. Они спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- «чрез, слишком» + τροφή - «еда, пища») - в них увеличивается количество мышечных волокон, объем мышечной массы нарастает.

В условиях гиподинамии (от греч. ὑπό — «под» и δύνᾰμις — «сила»), то есть пониженной активности, мышцы уменьшаются вплоть до полной атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление. Гипертрофия сердца - состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка - мезодермы.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Гладкая мышечная ткань: не подчиняется воле человека

Как известно, все мышечные клетки имеют общие черты. Но даже средний студент-медик легко отличит образцы клеток разного типа. Гладкая мышечная ткань имеет характерные отличия. И если вы обладаете хотя бы минимальными знаниями, вы никогда не перепутаете поперечнополосатую и гладкую мускулатуру. Это достаточно просто. В этой статье мы поговорим о том, что же такое гладкая мышечная ткань, а еще про ее свойства и строение.

Основная черта, отличающая этот вид ткани от ткани мускулатуры, которая приводится в действие сознанием человека (произвольной), - отсутствие поперечной исчерченности. У одной клетки есть только одно-единственное ядро, расположенное около середины ее (такую же черту имеет сердечная мышечная ткань). Это вы и увидите под стеклом микроскопа.

По большой части гладкая мышечная ткань находится в стенках полых органов разных систем, а также в составе стенок сосудов. Если эта ткань находится в стенке органов, то она, как правило, образует два слоя. Внутренний – кольцевой, и наружный – продольный. Впрочем, в некоторых частях различных систем это правило нарушается, и волокна располагаются спирально, например, в крупных артериях. Только на уровне артериол мышечная ткань человека организована в кольцевые волокна.

Слои ткани гладкого типа разделены на пучки волокон, каждый из которых окружен соединительной тканью, через которую подходят к мышечным клеткам нервы и кровеносные сосудики. Пучки тесно переплетены друг с другом, а потому образуется своеобразная интегрированная сеть мышечных волокон, которые выполняют свою работу совместно.

Гладкая мышечная ткань, как и сердечная мускулатура, находятся в ведении автономной нервной системы, а потому ее функционирование неподвластно сознательному контролю. Эта ткань способна длительное время находиться в состоянии частичного сокращения (поддерживать тонус). Поэтому трубчатые структуры способны долгое время иметь определенный просвет. Это очень важно для такого показателя как относительно постоянное артериальное давление.

Если тонус усиливается, просвет может сузиться. Иногда это носит патологический характер. Например, когда человек болеет астмой, тонус гладкой мускулатуры мельчайших бронхов становится чрезмерным, и воздух не может циркулировать нормально. Тот же процесс, по некоторым сведениям, лежит в основе формирования у людей гипертонии.

Гладкая мышечная ткань также способна регулировать количество эластина в кровеносных сосудах. В стенках ЖКТ, мочеточниках и яйцеводах гладкие мышцы сокращаются ритмично, образуя так называемые перистальтические волны, которые пробегают по трубкам и подталкивают их содержимое в нужном направлении.

Если сравнивать поперечнополосатые и гладкие мышечные клетки, можно отметить, что гладкие сокращаются намного медленнее. Исключение – гладкомышечные структуры зрачка, которые моментально реагируют на свет.

Как известно, в мышечной ткани содержатся белки актин и миозин. Выяснилось, что актина в гладких мышечных клетках больше, чем в поперечнополосатых. Также исследования при помощи сильно увеличивающих микроскопов позволили выявить тот факт, что саркоплазматический ретикулум в гладких мышечных клетках менее развит, чем в поперечнополосатых.

Как мы видели выше, есть два типа рассматриваемого вида ткани. Клетки первого, который находится в составе органов, способны сокращаться очень медленно. Этот тип называется висцеральным. А вот гладкая мышечная ткань в структуре сфинктера зрачка, способная сокращаться быстро, называется мышечной тканью с индивидуальной иннервацией волокон. Как ясно из названия второго, там каждое волокно имеет свой нерв. Первый же тип обходится организму «дешевле» - один нервный отросток там занимается множеством волокон.

Подробнее о гладкой мышечной ткани можно узнать из учебников гистологии. Но для неспециалистов информации данной статьи должно быть достаточно.

простым языком. От чего зависит сила человека

Мышечная система — это основа основ физического здоровья. Анатомия мышц человека представлена более 600 различными волокнами, которые составляют до 47 % от общей массы организма. От их функциональности зависит не только передвижение тела в пространстве, но и многие физиологические процессы: глотание, кровообращение, жевание, обмен веществ, сердечные сокращения и т. д. Мышечный каркас формирует строение тела, обеспечивает положение относительно окружающих предметов, позволяет человеку принимать участие в различных физических действиях и выполнять большую часть работ. Поэтому подробное изучение строения мышц, их классификации и функциональности считается одним из ключевых разделов анатомии.

Детальное строение мышечной ткани

Каждая отдельно взятая мышца — это целостный орган, состоящий из множества маленьких мышечных волокон — миоцитов, а также плотной и рыхлой соединительной ткани в различном соотношении. В ней выделяют 2 функциональные зоны: брюшко и сухожилие. Брюшко выполняет в основном сократительную функцию, поэтому представлено комбинацией соединительнотканного вещества и миоцитов, способных к сокращению и возбуждению. Сухожилие же считается пассивной частью мышцы. Оно располагается по краям и состоит из плотной соединительной ткани, благодаря которой осуществляется прикрепление волокон к костям и суставам.

Иннервация и кровоснабжение каждой мышцы осуществляется за счёт тончайших капилляров и нервных волокон, расположенных между пучками из 10–50 миоцитов. Благодаря этому мышечная ткань получает необходимое питание, снабжается кислородом и полезными веществами, а также может сокращаться в ответ на переданный нервной тканью импульс.

Каждое мышечное волокно выглядит как длинная многоядерная клетка, длина которой в разы превышает поперечное сечение. Оболочка, покрывающая миоцит, объединяет различное количество мелких миофибрилл, в зависимости от числа которых, выделяют белые и красные мышцы. В белых миоцитах число миофибрилл выше, поэтому они быстрее реагируют на импульс и активнее сокращаются. Красные волокна относятся к группе медленных, поскольку в них количество миофибрилл меньше.

Каждая миофибрилла состоит из ряда веществ, от которых зависят функциональные особенности и свойства мышц:

  • Актин — это аминокислотная белковая структура, способная к сокращению.
  • Миозин — главная составляющая миофибрилл, сформированная полипептидными цепочками из аминокислот.
  • Актиномиозин — комплекс белковых молекул актина и миозина.

Основную часть миоцитов составляют белки, вода и вспомогательные компоненты: соли, гликоген и др. Причём большую часть составляет именно вода — её процентное соотношение колеблется в диапазоне 70–80 %. Несмотря на это, каждое отдельно взятое мышечное волокно крайне сильное и устойчивое, и эта сила увеличивается в зависимости от количества миоцитов, объединённых в мышцу.

Анатомия мышц: классификация и функции

Огромное количество мышц в анатомии классифицируют по разным критериям, включающим строение, физиологические особенности, форму, размер, расположение и другие показатели. Рассмотрим каждую группу, чтобы понять, как устроена мышечная ткань человека:

  1. Гладкие мышечные волокна являются структурной единицей стенок внутренних органов, кровеносных капилляров и сосудов. Они сокращаются и расслабляются вне зависимости от импульсов, посланных сознанием человека. Работа гладких мышц отличается последовательностью, размеренностью и непрерывностью.
  2. Скелетные мышцы — каркас человеческого тела. Они отвечают за физическую активность, поддержание организма в определённом положении и двигательные возможности человека. Деятельность скелетной мускулатуры контролируется мозгом. Миоциты этой группы быстро сокращаются и расслабляются, активно реагируют на тренировки, но при этом склонны к утомлению.
  3. Сердечная мышца — отдельный вид миоцитов, объединивший часть функциональных особенностей гладких и скелетных волокон. С одной стороны, её активность непрерывна и не зависит от нервных импульсов, посланных сознанием, а с другой, сокращения осуществляются быстро и интенсивно.

Также мышцы подразделяются на топографические группы, исходя из их местоположения. В организме выделяют мышцы нижних конечностей (стопы, бедра и голени), верхних конечностей (кисти, плеча и предплечья), а также головы, шеи, груди, спины и живота. Каждая из этих групп делится на глубокую и поверхностную, наружную и внутреннюю.

В зависимости от количества суставов, охваченных мышцей, они делятся на односуставные, двусуставные и многосуставные. Чем больше сочленений задействовано, тем выше функционал конкретной мышцы.

Кроме того, мышцы классифицируются по форме и строению. К группе простых относятся веретенообразные, длинные, прямые, короткие и широкие волокна. Многоглавые мышцы — сложные. Они представлены бицепсом, состоящим из 2 головок, трицепсом — из 3 головок и квадрицепсом — из 4 головок. Кроме того, сложными считаются многосухожильные и двубрюшные группы миоцитов. Они бывают квадратными, дельтовидными, пирамидальными, зубчатыми, ромбовидными, камбаловидными, круглыми или треугольными.

В зависимости от функциональных особенностей выделяют:

  • сгибатели,
  • разгибатели,
  • пронаторы (вращатели по направлению кнутри),
  • супинаторы (вращатели к наружной стороне),
  • мышцы, отвечающие за отведение и приведение, поднятие и опускание и т. д.

Основная масса мышц работает парно, выполняя общую или противоположную функцию. Мышца-агонист выполняет определённое действие (например, сгибание), а антагонист — прямо противоположное (то есть разгибание). Столь сложный многоступенчатый комплекс обеспечивает слаженные и плавные движения человеческого тела.

Физиология мышц человека

К основным свойствам мышечной ткани, обеспечивающим полноценную функциональность структур, относятся:

  • Сократимость — способность к сокращению.
  • Возбудимость — реакция на нервный импульс.
  • Эластичность — изменение длины и диаметра волокон в зависимости от внешнего и внутреннего воздействия.

Сокращение мышц регулируется посредством деятельности нервной системы. Каждая мышца содержит множество нервных окончаний, которые можно условно разделить на 2 разновидности — рецепторы и аффекторы. Чувствительные рецепторы воспринимают скорость и степень растяжения и сокращения, силу воздействия и движения миоцитов. Они могут располагаться свободно, разветвляясь в толще мышцы, или несвободно, переплетаясь в веретенообразный комплекс. Информация о состоянии и положении мышечного волокна из рецепторов поступает в ЦНС, откуда передаётся обратно эффекторам, вызывая их возбуждение и, как следствие, реакцию на полученный импульс.

shutterstock_1253fff57543.jpg

Сокращение миоцитов осуществляется за счёт проникновения нитей актина между цепочками миозина. При этом общая длина актиновых и миозиновых волокон не изменяется — сокращение наступает из-за изменения длины актиномиозинового комплекса. Такой механизм называется скользящим и сопровождается расходом энергетического запаса организма.

Также в мышцах содержатся нервные волокна, регулирующие процесс обмена веществ и состояние миоцитов в покое. Благодаря этому осуществляется регулировка работы мышечной ткани, предупреждается переутомление и нефизиологичное перерастяжение или сокращение. Такой механизм позволяет адаптировать работу мышц к окружающей среде и обеспечивать полноценную функциональность организма.

Заключение

Анатомия мышц, их количество и соотношение является физиологической неизменной, зависящей от наследственности и особенностей организма. Тем не менее, грамотно приложенная физическая нагрузка, регулярные тренировки и здоровый образ жизни могут привести к развитию мышечных волокон, более высокой выносливости, силе и устойчивости. Не стоит полагать, что от этого зависит лишь состояние скелетной мускулатуры и рельеф тела, — правильно составленный комплекс занятий улучшает работу ещё и гладких и сердечных миоцитов. Благодаря этому можно запустить круговорот «обратной связи»: развитая с помощью регулярных тренировок сердечная мышца лучше перекачивает кровь по организму, поэтому все органы, включая и скелетные мышцы, получают больше питания и кислорода, необходимого для преодоления нагрузок. А физически развитые скелетные и гладкие мышцы, в свою очередь, лучше удерживают внутренние органы, обеспечивая их полноценную работу.

Зная основы анатомии мышц человека, вы сможете грамотно построить тренировочный процесс, привнести в свою жизнь основы физической активности и вместе с тем улучшить состояние организма в целом.

Мышцы. Гладкая мускулатура. Сердечная мышца

Мышцы

   Мышечная система человека включает 3 группы мышц:

1)  скелетные или поперечно исчерченные мышцы

2)  гладкие мышцы стенок сосудов и внутренних органов

3)  сердечная мышца

К локомоторному аппарату относят скелетные мышцы, которые преобразуют химическую Е в механическую и тепловую. Сокращение мышц возникает в ответ на импульс, который приходит по двигательным нейронам или мотонейронам. Т.о. формируется единый нервно мышечный аппарат. В результате сокращения скелетных мышц  осуществляется поддержание позы, перемещение тела, либо частей тела.

   Основной функциональной единицей нервно – мышечного соединения  является двигательная единица (ДЕ). Это мотонейрон и все мышечные волокна, которые он иннервирует. Аксон мотонейрона выходит из спинного мозга, в составе периферических нервов доходит до мышцы, и в ней ветвится. ДЕ всегда функционирует как единое морфофункциональное образование.

   Клетки скелетной мускулатуры длинные, многоядерные, для них характерны: возбудимость, сократимость и проведение нервного импульса. Характерной чертой этих клеток является наличие сакроплазматического ритикулема. Он представлен системой трубочек и цистерн, которые располагаются в каждой клетке,

причем как правило формируется система поперечных трубочек (Т-система). Трубочки Т-системы возникают как впячивания мембраны клетки. В трубочках ретикулема запасается Са, и при недостатке Са в цитоплазме он выводится из трубочек.

   Структурно – функциональной единицей каждой мышечной клетки является саркомер, представленный меозиновыми бивалентами, которые формируют толстые пучки, и актиновыми микрофибриллами.

   Регулярное чередование саркомеров придает мышце поперечную исчерченность.

   Медиатором в нервно – мышечном синапсе является ацетилхолин.

   Режим сокращений мышечных волокон определяется частотой импульсации в мотонейронах.

   Механический ответ мышечного волокна или отдельной мышцы на однократное раздражение называется одиночным сокращением. В нем выделяют 2 фазы:

1)  фаза развития укорочения или напряжения

2)  фаза расслабления или удлинения (в 2 раза больше, чем фаза напряжения)

  Входе периода расслабления в мышечной клетке восстанавливается количество

     энергетического субстрата, количество АТФ, метаболиты и МК покидают мышцу. Т.о.

     фаза необходима для того, чтобы мышца работала без утомления. В режиме

     одиночного сокращения мышца может работать достаточно долго, однако

     интенсивность такой работы невелика.

       При относительно высокой частоте импульсации каждый последующий импульс  

     приходит к мышце до начала периода расслабления. В этом случае механический

     эффект импульсов суммируется, пока мышца не доходит до пороговой величины

     укорочения. Такой режим сокращений называется гладким титанусом.

       В естественных условиях сила сокращения ДЕ несколько колеблется, и такая

     ситуация называется зубчатым титанусом. В режиме титануса мышцы работают

     достаточно короткое время, т.к. отсутствует период расслабления и в мышце

     развивается утомление.

       По величине укорочения мышцы различают 3 типа мышечных сокращений:

1)  Изотоническое. В этом случае волокна укорачиваются при постоянной внешней нагрузке. В реальных условиях такое сокращение практически всегда отсутствует.

2)  Изометрическое. В этом случае в мышце развивается напряжение без изменения длины мышцы. Характерно для поддержания позы, т.е. для статической работы.

3)  Онизотоническая. В этом случае в мышце развивается напряжение и он укорачивается. Лежит в основе динамической работы, т.е. бег, ходьба.

Все ДЕ по своим свойствам и параметрам делятся на 3 основных типа:

1)  медленные и неутомляемые

2)  быстрые устойчивые к утомлению

3)  быстрые легко утомляемые

У человека представлены все группы ДЕ, но их соотношение зависит от генотипа.

      ЦНС регулирует величину напряжения в мышцах;          используют как правило 3

    механизма:

1)  регуляция числа активных ДЕ

2)  регуляция частоты импульсов в мотонейронах

3)  синхронизация работы различных ДЕ

    Работа скелетной мускулатуры тесно связана с величиной кровоснабжения. Суммарный

  поток крови через мышечную ткань составляет 15 – 20% от всего минутного объема

  крови.

    Величина кровоснабжения зависит от:

             1) степени расширения сосудов

2) величины механического противостояния кровотока

3) от размеров работающих мышечных групп

4) от величины среднего артериального давления

                Нормальное кровоснабжение крайне важно, т.к. оно активизирует энергообмен.

    Единственным прямым источником Е для мышечного сокращения является АТФ. АТФ образуется за счет деятельности 3–х систем в мышечной клетке:

   1) креатин - фосфатная система: включает в себя креатин – фосфат, в котором формируется макроэргическая связь. Эта система работает на первых этапах мышечного сокращения. Она характеризуется очень большой мощностью, но емкость ее не велика, поэтому следом за ней активируется гликолитическая система.

   2) скорость образования АТФ при гликолизе в 2 раза превышает скорость образования АТФ в креатин – фосфатной системе. Однако активизация гликолитического пути может привести к лактоацидозу. По мере увеличения деятельности мышечного сокращения, ресинтез АТФ осуществляется в основном за счет окислительного фосфорилирования. При работе очень большой мощности в качестве источника Е используется глюкоза. При работе малой интенсивности начинается расщепление жира.

   К поперечной скелетной мускулатуре относятся следующие группы мышц:

1) жевательная и мимическая мускулатура лица

2) мышцы шеи

3) широчайшая мышца спины

4) межреберная мускулатура

5) сегментарная мускулатура брюшного пресса, мышцы конечностей: бицепсы, трицепсы, ягодичные мышцы, бедренные мышцы.

   Мышцы конечностей как правило работают как антогонисты, т.е. сгибатели и разгибатели, привода в движение кости конечностей.

Гладкая мускулатура

   Располагается в стенках внутренних органов и кровеносных сосудов. Регуляция осуществляется двигательными волокнами вегетативной нервной системы. Кроме того возможна регуляция за счет гуморальных факторов.

   Сократительный аппарат состоит из миозиновых бивалентов и актиновых фибрилл. Однако они располагаются не регулярно, т.е. мышцы не имеют поперечной исчерченности.

   Клетки характеризуются веретенообразной формой, одноядерны, и отделены друг от друга узкими щелями. Между клетками находится большое количество электрических синапсов, что в определенной степени синхронизирует их работу. При работе гладких мышц скорость сокращения и скорость расщепления АТФ примерно в 1000 раз меньше, чем в скелетных мышцах. Поэтому гладкие мышцы хорошо приспособлены к длительному тоническому сокращению. При этом затраты Е в такой мышце невелики.

   Гладкие мышцы с точки зрения характера сокращения подразделяются на мышцы, обладающие и необладающие спонтанной активностью.

   Мышцы со спонтанной активностью способны сокращаться при отсутствии прямых возбуждений со стороны нервной системы и при отсутствии гуморальных воздействий. В этом случае волна возбуждения часто связана с растяжением клеток, при котором возникает потенциал действия (ПД).

   Спонтанная активность характерна для клеток кишечника, клеток желудка. При этом стенки этих органов способны к перистатическим сокращениям.

   Мышцы, не обладающие спонтанной активностью, получают импульсы по вегетативной системе. К ним относятся мышцы артерий, семенных протоков и радужки.

Сердечная мышца

   Представлена совокупностью кардиомиоцитов, которые формирую миокард. Клетки достаточно короткие, но с ярко выраженной поперечной исчерченностью и с большим количеством электрических синапсов. (см. автоматизм работы сердца)

Гладкие мышцы. Нормальная физиология

Гладкие мышцы

Эти мышцы образуют мышечные слои стенок желудка, кишечника, мочеточников, бронхов, кровеносных сосудов и других внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток. Гладкие мышцы разделяются на две основные группы: мультиунитарные и унитарные. Мультиунитарные мышцы функционируют независимо друг от друга, и каждое волокно может иннервироваться отдельным нервным окончанием. Такие волокна обнаружены в ресничной мышце глаза, мигательной перепонке и мышечных слоях некоторых крупных сосудов, к ним относятся мышцы, поднимающие волосы. У унитарных мышц волокна настолько тесно переплетены, что их мембраны могуг сливаться, образуя электрические контакты (нексусы). При раздражении одного волокна за счет этих контактов ПД быстро распространяются на соседние волокна. Поэтому, несмотря на то, что двигательные нервные окончания расположены на небольшом числе мышечных волокон, в реакцию вовлекается вся мышца. Такие мышцы имеются в большинстве органов: пищеварительном тракте, матке, в мочеточниках.

Особенностью гладких мышц является их способность осуществлять медленные и длительные тонические сокращения. Медленные, ритмические сокращения гладких мышц желудка, кишечника, мочеточников и других органов обеспечивают перемещение содержимого этих органов. Длительные тонические сокращения гладких мышц обеспечивают функционирование сфинктеров полых органов, которые препятствуют выходу их содержимого.

Гладкие мышцы стенок кровеносных сосудов, особенно артерий и артериол, также находятся в состоянии постоянного тонического сокращения. Изменение тонуса мышц стенок артериальных сосудов влияет на величину их просвета и, следовательно, на уровень кровяного давления и кровоснабжения органов. Важным свойством гладких мышц является их пластичность, т. е. способность сохранять приданную им при растяжении длину. Скелетная мышца в норме почти не обладает пластичностью. При удалении растягивающего груза скелетная мышца быстро укорачивается, а гладкая остается растянутой. Высокая пластичность гладких мышц имеет большое значение для нормального функционирования полых органов. Например, пластичность мышц мочевого пузыря по мере его наполнения предотвращает избыточное повышение давления.

Сильное и резкое растяжение гладких мышц вызывает их сокращение, что обусловлено нарастающей при растяжении деполяризацией клеток, которая обеспечивает автоматию гладкой мышцы. Такое сокращение играет важную роль в авторегуляции тонуса кровеносных сосудов, а также способствует непроизвольному опорожнению переполненного мочевого пузыря в тех случаях, когда нервная регуляция отсутствует в результате повреждения спинного мозга.

В гладких мышцах тетаническое сокращение возникает при низкой частоте стимуляции. В отличие от скелетных, гладкие мышцы способны развивать спонтанные тетанообразные сокращения в условиях денервации и даже после блокады интрамуральных ганглиев. Такие сокращения возникают вследствие активности клеток, обладающих автоматией (пейсмекерных клеток), которые отличаются по электрофизиологическим свойствам от других мышечных клеток. В них появляются пейсмекерные потенциалы, деполяризующие мембрану до критического уровня, что вызывает возникновение потенциала действия.

Особенностью гладких мышц является их высокая чувствительность к медиаторам, которые оказывают на спонтанную активность пейсмекеров модулирующие влияния. При нанесении ацетилхолина на препарат мышцы толстой кишки частота ПД возрастает. Вызываемые ими сокращения сливаются, образуется почти гладкий тетанус. Чем выше частота ПД, тем сильнее сокращение. Норадреналин, напротив, гиперполяризует мембрану, снижая частоту ПД и величину тетануса.

Возбуждение гладкомышечных клеток вызывает повышение концентрации кальция в саркоплазме, что активирует сократительные структуры. Так же как сердечная и скелетная мышцы, гладкая мышца расслабляется при снижении концентрации ионов кальция. Расслабление гладких мышц происходит медленнее, так как удаление ионов кальция замедлено.

Поделитесь на страничке

Следующая глава >

Мышцы туловища человека — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 марта 2020; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 8 марта 2020; проверки требуют 5 правок.

Мышцы туловища, также как и мышцы шеи, разделяют на две группы: собственные мышцы и мышцы-пришельцы.

Собственные мышцы лежат очень глубоко, на самых костях осевого скелета, и своими сокращениями приводят в движение главным образом скелет туловища и головы. Мышцы-пришельцы при развитии зародыша появляются на туловище позднее и поэтому располагаются на поверхности его собственной мускулатуры. Мышцы-пришельцы отличаются от собственных мышц тем, что связаны, главным образом, с работой верхних конечностей, хотя способны при определённых условиях приводить в движение туловище и голову. Собственные мышцы находятся во всех областях туловища; мышцы-пришельцы располагаются на груди, спине и шее.

Мышцы, расположенные вдоль срединной линии туловища, имеют продольное направление волокон, а находящиеся сбоку — косое.

Собственные мышцы[править | править код]

Волокна собственных мышц груди лежат в трёх пересекающихся направлениях. Такое строение упрочивает грудную стенку.

Мышца Начало Прикрепление Функция
Наружные межрёберные мышцы Нижний край вышележащего ребра Верхний край нижележащего ребра При сокращении поднимают рёбра, увеличивая объём грудной клетки в переднезаднем и поперечном направлениях. Одни из основных мышц вдоха.
Мышцы, поднимающие рёбра Поперечные отростки грудных позвонков Угол близлежащего ребра При сокращении поднимают рёбра, увеличивая объём грудной клетки в переднезаднем и поперечном направлениях. Одни из основных мышц вдоха.
Внутренние межрёберные мышцы Верхний край нижележащего ребра Нижний край вышележащего ребра Сокращаясь, опускают рёбра и, уменьшая размер грудной клетки, способствуют выдоху.
Самые внутренние межрёберные мышцы (внутренние пучки внутренних межрёберных мышц) Верхний край нижележащих рёбер Нижний край вышележащих рёбер Сокращаясь, опускают рёбра и, уменьшая размер грудной клетки, способствуют выдоху.
Поперечная мышца груди Мечевидный отросток грудины Внутренняя поверхность хрящей II—VI рёбер Опускает рёбра, способствует выдоху.
Подрёберные мышцы X—XII ребра возле их углов (внутренняя поверхность) Внутренняя поверхность вышележащих рёбер Опускают рёбра.
Диафрагма (грудобрюшная преграда) Грудина, рёбра, поясничные позвонки Образует сухожильный центр Основная дыхательная мышца. При сокращении её купол опускается, и вертикальный размер грудной клетки увеличивается; при этом лёгкие механически растягиваются и осуществляется вдох.
Большая грудная мышца Медиальная половина ключицы, рукоятка и тело грудины, хрящи II—VII рёбер, передняя стенка влагалища прямой мышцы живота Гребень большого бугорка плечевой кости Приводит плечо к туловищу, опускает поднятое плечо. При фиксированных верхних конечностях приподнимает рёбра, участвует в акте вдоха.

Мышцы-пришельцы[править | править код]

Мышцы-пришельцы, покрывающие собственные мышцы груди, являются у человека мощно развитыми. Они приводят в движение и укрепляют на туловище верхние конечности.

Мышца Начало Прикрепление Функция
Большая грудная мышца Грудинная часть ключицы, край грудины, хрящи V—VI рёбер Гребень большого бугорка плечевой кости Сокращаясь, мышца приводит и пронирует плечо, тянет его вперёд.
Малая грудная мышца II—V рёбра Клювовидный отросток При сокращении тянет лопатку вниз и вперёд.
Передняя зубчатая мышца II—IX рёбра Медиальный край лопатки и её нижний угол При сокращении мышца тянет лопатку вперёд, а её нижний угол — наружу, благодаря чему лопатка вращается вокруг сагитальной оси и её латеральный угол поднимается. В случае, если рука отведена, мышца, вращая лопатку, поднимает руку выше уровня плечевого сустава.

Брюшная стенка образована группой собственных мышц живота. Наружную и внутреннюю косые и поперечные мышцы называют «широкими мышцами живота». Сухожильные волокна их апоневрозов, переплетаясь спереди, образуют посередине брюшной стенки белую линию живота. Широкие мышцы имеют косое направление волокон и лежат, как и на груди, в три слоя, причём наружная косая мышца живота — продолжение наружных межрёберных мышц, внутренняя косая — внутренних межрёберных, а поперечная мышца живота — одноимённой мышцы груди. Квадратная мышца поясницы образует заднюю брюшную стенку. Нижняя стенка брюшной полости (или дно малого таза) называется «промежностью».

Мышца Начало Прикрепление Функция
Прямая мышца живота Лобковая кость Хрящи V—VII рёбер, мечевидный отросток грудины Сближая края таза и грудной клетки, сгибает позвоночный столб, то есть работает как антагонист мышцы — разгибателя спины. При фиксированной грудной клетке поднимает таз.
Пирамидальная мышца Лобковый гребень Белая линия живота Рудимент сумочной мышцы млекопитающих, нередко отсутствует. При сокращении натягивает белую линию живота.
Наружная косая мышца живота Наружная поверхность V—XII рёбер Подвздошный гребень, лобковый симфиз, белая линия живота При обычных положениях, когда опорой служит таз, поворачивают и наклоняют грудную клетку в левую и правую стороны. В случаях когда опорой служит грудная клетка, а таз c ногами «подвешен» к ней (например, на турнике, брусьях и т. п.), приподнимают таз c ногами и поворачивают его в обе стороны.
Внутренняя косая мышца живота Подвздошный гребень Хрящи нижних рёбер, белая линия живота При обычных положениях, когда опорой служит таз, поворачивают и наклоняют грудную клетку в левую и правую стороны. В случаях когда опорой служит грудная клетка, а таз c ногами «подвешен» к ней (например, на турнике, брусьях и т. п.), приподнимают таз c ногами и поворачивают его в обе стороны.
Поперечная мышца живота Внутренняя поверхность VI—XII рёбер, подвздошный гребень Белая линия живота Напрягается при втягивании нижней части живота. В момент сокращения сжимает внутренние органы. Это способствует освобождению лёгких от воздуха, в результате чего происходит форсированный выдох.
Квадратная мышца поясницы Подвздошный гребень, поперечные отростки нижних поясничных позвонков XII ребро, II—IV поясничные позвонки, тело XII позвонка Тянет подвздошную кость кверху, а XII ребро — книзу; участвует в боковых сгибаниях поясничной части позвоночного столба; при двустороннем сокращении тянет поясничный отдел позвоночного столба назад.

К мышцам спины также традиционно относят мышцы, лежащие на шее сзади от позвоночника.

Собственные мышцы вентрального происхождения[править | править код]

Мышца Начало Прикрепление Функция
Задняя верхняя зубчатая мышца От нижней части выйной связки, двух (одного) нижних шейных и двух верхних грудных позвонков II—V рёбра Приподнимает II—V рёбра, расширяя грудную клетку при дыхательном акте.
Задняя нижняя зубчатая мышца От остистых отростков 2 (1) нижних грудных позвонков и 2 (3) верхних поясничных IX—XII рёбра Опускает IX—XII рёбра, сужая грудную клетку при дыхательном акте.

Собственные мышцы дорсального происхождения (глубокие мышцы спины)[править | править код]

I тракт[править | править код]
Мышца Начало Прикрепление Функция
Ременная мышца головы От выйной связки, остистых отростков 3 нижних шейных и 3 верхних грудных позвонков Затылочная кость Поворот, наклон головы вбок, при двустороннем сокращении — разгибание шейного отдела.
Ременная мышца шеи От остистых отростков 3—5 грудных позвонков Задние бугорки поперечных отростков 2—3 верхних шейных позвонков При двустороннем сокращении тянет голову и шею назад, при одностороннем сокращении — тянет в свою сторону, поворачивая голову и шею.
II тракт[править | править код]
Мышца Начало Прикрепление Функция
Мышца, выпрямляющая позвоночник Остистые отростки поясничных и нижних грудных позвонков, крестец, подвздошный гребень Углы рёбер, поперечные отростки VI—VII шейных позвонков Удерживает тело в вертикальном положении, разгибает позвоночник.
Подвздошно-рёберная мышца Остистые отростки поясничных и нижних грудных позвонков, крестец, подвздошный гребень Поперечные отростки грудных и шейных позвонков, углы II—XII рёбер, височная кость Вместе с остальными частями мышцы, выпрямляющей позвоночник, разгибает позвоночник; при одностороннем сокращении наклоняет позвоночник в свою сторону, опускает рёбра. Нижние пучки этой мышцы, оттягивая и укрепляя рёбра, создают опору для диафрагмы.
Длиннейшая мышца Остистые отростки поясничных и нижних грудных позвонков, крестец, подвздошный гребень Поперечные отростки грудных и шейных позвонков, углы II—XII рёбер, височная кость Вместе с остальными частями мышцы, выпрямляющей позвоночник, разгибает позвоночник; при одностороннем сокращении наклоняет позвоночник в свою сторону, опускает рёбра. Нижние пучки этой мышцы, оттягивая и укрепляя рёбра, создают опору для диафрагмы.
Остистая мышца Остистые отростки поясничных и нижних грудных позвонков, крестец, подвздошный гребень Остистые отростки грудных и шейных позвонков, затылочная кость Разгибает позвоночник.
III тракт[править | править код]
Мышца Начало Прикрепление Функция
Поперечно-остистая мышца спины Поперечные отростки позвонков Остистые отростки вышележащих позвонков При двустороннем сокращении разгибает соответствующий отдел позвоночника; при одностороннем — наклоняет позвоночник в свою сторону.
IV тракт[править | править код]

Мышцы-пришельцы[править | править код]

Поверхностный слой[править | править код]
Второй слой[править | править код]
Мышца Начало Прикрепление Функция
Ромбовидная мышца Остистые отростки VII шейного и I—V грудных позвонков Медиальный край лопатки Приближает лопатку к позвоночнику, одновременно перемещая её вверх.
Мышца, поднимающая лопатку Поперечные отростки четырёх верхних шейных позвонков Верхний угол лопатки Поднимает лопатку, одновременно приближая её к позвоночнику; при укрепленной лопатке наклоняет кзади и в свою сторону шейную часть позвоночника.
  • Сапин, Никитюк, Николенко, Чава. Анатомия человека: учебник: в двух томах / Сапин. — том 1. — М.: ГОЭТАР-Медиа, 2013. — 528 с.

Смотрите также

Описание: