Где находятся предохранители в компьютере


Блок питания ПК – схема, ремонт своими руками

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами.

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.

После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.

Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно глядя на кулер блока питания (виден за решеткой на задней стенке системного блока) нажать кнопку «Пуск» компьютера. Если лопасти кулера, хоть немного сдвинуться, значит, исправны фильтр, предохранитель, диодный мост и конденсаторы левой части структурной схемы, а также самостоятельный маломощный источник питания +5 B_SB.

В некоторых моделях БП кулер находится на плоской стороне и чтобы его увидеть, нужно снять левую боковую стенку системного блока.

Поворот на маленький угол и остановка крыльчатки кулера при нажатии на кнопку «Пуск» свидетельствует о том, что на мгновенье на выходе БП появляются выходные напряжения, после чего срабатывает защита, останавливающая работу БП. Защита настроена таким образом, что если величина тока по одному из выходных напряжений превысит заданный порог, то отключаются все напряжения.

Причиной перегрузки обычно является короткое замыкание в низковольтных цепях самого БП или в одном из блоков компьютера. Короткое замыкание обычно появляется при пробое в полупроводниковых приборах или изоляции в конденсаторах.

Для определения узла, в котором возникло короткое замыкание нужно отсоединить все разъемы БП от блоков компьютера, оставив только подключенные к материнской плате. После чего подключить компьютер к питающей сети и нажать кнопку «Пуск». Если кулер в БП завращался, значит, неисправен один из отключенных узлов. Для определения неисправного узла нужно их последовательно подключать к блоку питания.

Если БП, подключенный только к материнской плате не заработал, следует продолжить поиск неисправности и определить, какое из этих устройств неисправно.

Проверка БП компьютера
измерением величины сопротивления выходных цепей

При ремонте БП некоторые виды его неисправности можно определить путем измерения омметром величины сопротивления между общим проводом GND черного цвета и остальными контактами выходных разъемов.

Перед началом измерений БП должен быть отключен от питающей сети, и все его разъемы отсоединены от узлов системного блока. Мультиметр или тестер нужно включить в режим измерения сопротивления и выбрать предел 200 Ом. Общий провод прибора подключить к контакту разъема, к которому подходит черный провод. Концом второго щупа по очереди прикасаются к контактам, в соответствии с таблицей.

В таблице приведены обобщенные данные, полученные в результате измерения величины сопротивления выходных цепей 20 исправных

Перегорел входной предохранитель в блоке питания. Диагностика.

Перегорел входной предохранитель в блоке питания. Диагностика.

Статья написана для постигающих азы в ремонте.

Сгорел входной предохранитель в блоке питания? Разберемся в причинах и как правильно проводить диагностику. Также затронем пару сопутствующих тем при анализе этой неисправности.

 

Думаю многие сталкивались с такой ситуацией когда включаем устройство  но нет никакой реакции, и после непродолжительной диагностики выявляем сгоревший  сетевой предохранитель. Причем неважно БП компьютера это или плата питания копира или факса.  Естественно многие его сразу меняют или что еще хуже ставят перемычку и тут же включают устройство. И вот тут то с большей долей вероятности он сгорит снова или выбьет автоматы в щитке. Давайте разберемся подробнее в чем же дело и почему нельзя менять предохранитель без диагностики.

Сначала взглянем на типовую схему входа в импульсных блоках питания.

 

Как видим предохранитель FU1 стоит первым в цепи, и основная его функция защитная. Но, это защита не внутренних компонентов схемы от превышения напряжения, а защита всей платы от короткого замыкания этих самых компонентов, и в конечном итоге предотвращение воспламенения внутри устройства.

Поэтому когда сгорает сетевой предохранитель во входной цепи, то это означает не то что было превышение питающего напряжение, а короткое замыкание в цепи после предохранителя. И как правило в 80% случаев если восстановить цепь вставив новый пред, и замерив сопротивление на входе блока между контактами L и N то обнаружим сопротивление равное нулю или чуть более.

Сгоревший предохранитель это следствие, поэтому как только обнаружили что он неисправен приступаем к диагностике.

Диагностику начинаем от входа, первым в списке стоит варистор VR1, выглядят они в целом виде так:

Вот они как раз и выполняют функцию защиты блока питания об бросков напряжения. Суть их в том что при превышение определенного порога напряжения они начинают пропускать через себя ток, защищая остальной участок цепи. При возможны несколько вариантов событий:

1.Импульс входного напряжения был незначительный и варистор сработав поглотил его рассеяв в тепло, потому в даташитах на них и указывается какую мощность они могут принят.

2. Импульс входного напряжения был более сильным, и варистор сработав замкнув цепь привел к образованию повышенного тока протекающего через предохранитель, который выгорел. При этом варистор пробит не был, и остался функционирующим. В таком случае замена сетевого предохранителя восстановит работоспособность.

3. Длительное превышение напряжения. При таком раскладе происходит тепловой пробой варистора приводящий к короткому замыканию цепи. Как правило это можно увидеть невооруженным взглядом в виде раскола, почернение и так далее.

Но дефект может быть и скрытым, поэтому если в цепи КЗ, то выпаиваем его в первую очередь и проверяем. Если дефект в нем, то тут у нас выбор, не впаивать его обратно совсем, на работоспособность схемы это не повлияет, но в следующий раз сгорит уже что-то другое, и замена на аналог. Советую всегда ставить новый.

К сожалению варисторы стоят не во всех блоках питания. Стоит также отметить что расположен в схеме он может как до дросселей, так и после, а обозначаться может как угодно.

Смотрим дальше:
Конденсаторы С1 и С4 служат для подавления низкочастотных дифференциальных помех, с емкостью порядка сотен нанофарад  и напряжением от 250 вольт. На схеме может обозначаться как Сх, и иметь прямоугольный вид. По своему типу пленочный, и практически никогда не выходит из строя. Но проверить все же стоит.

Дроссель Т1 - служит для подавления синфазных помех. Несмотря на то что обмотки могут находится на одном магнитопроводе, обмотки фаз разнесены друг от друга на расстоянии, и замыкания быть не должно. Но может произойти обрыв обмоток. В таком случае это однозначно говорит о коротком замыкании в цепи дальше.

Конденсаторы С2 и С3  также выполняют роль фильтра синфазных помех. Пробои случаются, но выглядит это несколько иначе, так как в общей точке они соединены с корпусов устройства, то при отсутствии заземления при прикасании к металлическим частям корпуса будет чувствоваться удар током.
Термистор Т - выполняет функцию ограничения стартового тока при включении устройства в сеть. Суть термистора в том что в обесточенном блоке питания  и при нормальной температуре он имеет высокое сопротивление, при подаче напряжения происходит нагрев термистора и уменьшение его сопротивления до нуля. Таким образом происходит плавный запуск блока питания.

И так, мы рассмотрели основные элементы так называемого входного фильтра, но стоит учитывать что это только примерная схема, различные производители могут видоизменять ее, так например отказ от конденсаторов, замена дросселей на перемычки, отсутствие варисторов и термисторов. В некоторых устройствах наоборот может наблюдаться усложнение, в виде добавочных варисторов между землей и фазой. При проверке элементов на пробой обязательно выпаиваем их, проверять в схеме на короткое замыкание бессмысленно.

Теперь перейдем к следующему компоненту:

Диодный мост D1-D4. По статистике причиной кз во входной цепи держит лидирующее место. При этом он может быть выполнен как в виде четырех отдельных диодов, так и в виде сборки.

Проверять в схеме не имеет смысла, поэтому выпаиваем и смотрим наличие пробоя, также проверяем падение напряжения в норме от 400 до 600, но точная информация в даташитах на них. Главное чтобы эти значения не отличались для каждого диода или перехода в сборке более чем на несколько единиц. Причин выхода из строя диодного моста может быть как пробой вследствие превышения напряжения или тока, и деградация np-перехода от времени.

В цепи после диодного выпрямителя расположен сетевой конденсатор С5, с напряжением обычно 400 вольт и емкостью от 40 до 200 мкф. Он так же может служить причиной короткого замыкания по причине пробоя между обкладками. Для проверки его также требуется выпаять из схемы, и следует проявить осторожность, так как исправный конденсатор может долго хранить заряд. Для проверки уже нужен специальный прибор LC-метр. Предварительно разрядив конденсатор проверяем его емкость и ток утечки.  Хотя можно и визуально определить неисправность в виде вздутия, или, если потрести его, в виде постукивания внутри, но такой способ не может показать скрытые дефекты.

И последним этапом проверки будет измерение транзистора Q1, на наличие пробоя. В приведенном выше рисунке опущена схема управления транзистором, поэтому в зависимости от компоновки не лишним будет проверить и его обвязку. И кстати, если он пробит то тут прежде чем его менять, следует уже более подробно разбираться со схемой управления транзистором и трансформатором следующим после него на предмет межвиткового замыкания.

И подходим к итогу:

Только проведя все эти проверки в цепи и заменив неисправные компоненты, можем ставить предохранитель такого же номинала и производить включение.

Надеюсь статья была полезна.

Поиск неисправностей и самостоятельный ремонт компьютерного блока питания

Работоспособность персонального компьютера (ПК) не в последнюю очередь зависит от качества работы блока питания (БП). В случае его выхода из строя устройство не сможет включиться, а значит, придётся провести замену или ремонт блока питания компьютера. Будь то современный игровой или слабый офисный компьютер, работают все БП по сходному принципу, и методика поиска неисправностей для них одинакова.

Принцип работы и основные узлы

Перед тем как взяться за ремонт БП, необходимо понимать, каким образом он работает, знать его основные узлы. Ремонт блоков питания следует осуществлять предельно осторожно и помнить про электробезопасность во время работы. К основным узлам БП относят:

  • входной (сетевой) фильтр;
  • дополнительный формирователь стабилизированного сигнала 5 вольт;
  • главный формирователь +3,3 В, +5 В, +12 В, а также -5 В и -12В;
  • стабилизатор напряжения линии +3,3 вольта;
  • выпрямитель высокочастотный;
  • фильтры линий формирования напряжений;
  • узел контроля и защиты;
  • блок наличия сигнала PS_ON от компьютера;
  • формирователь напряжения PW_OK.

Фильтр, стоящий на входе, используется для подавления помех, генерирующихся БП в электрическую цепь. Одновременно с этим он выполняет защитную функцию при нештатных режимах работы БП: защита от превышения значения тока, защита от всплесков напряжения.

При включении БП в сеть на 220 вольт на материнскую плату через дополнительный формирователь поступает стабилизированный сигнал с величиной равной 5 вольт. Работа основного формирователя в этот момент блокируется сигналом PS_ON, сформированным материнской платой и равным 3 вольта.

После нажатия кнопки включения на ПК, значение PS_ON становится равным нулю и происходит запуск основного преобразователя. Источник питания начинает вырабатывать основные сигналы, поступающие на компьютерную плату и схемы защиты. В случае значительного превышения уровня напряжения схема защиты прерывает работу основного формирователя.

Для запуска материнской платы на неё одновременно, с прибора питания, подаётся напряжение +3,3 вольта и +5 вольт для формирования уровня PW_OK, что обозначает питание в норме. Каждый цвет провода в устройстве питания соответствует своему уровню напряжения:

  • чёрный, общий провод;
  • белый, -5 вольт;
  • синий, -12 вольт;
  • жёлтый, +12 вольт;
  • красный, +5 вольт;
  • оранжевый, +3,3 вольта;
  • зелёный, сигнал PS_ON;
  • серый, сигнал PW_OK;
  • фиолетовый, дежурное питание.

Устройство питания в основе своей работы использует принцип широтно-импульсной модуляции (ШИМ). Сетевое напряжение, преобразованное диодным мостом, поступает на силовой блок. Его величина составляет 300 вольт. Работой транзисторов в силовом блоке управляет специализированная микросхема ШИМ контроллер. При поступлении сигнала на транзистор происходит его открывание, и на первичной обмотке импульсного трансформатора возникает ток. В результате электромагнитной индукции проявляется напряжение и на вторичной обмотке. Изменяя длительность импульса, регулируется время открытия ключевого транзистора, а значит и величина сигнала.

Контроллер, входящий в состав основного преобразователя, запускается от разрешающего сигнала материнской платы. Напряжение попадает на силовой трансформатор, а с его вторичных обмоток поступает на остальные узлы источника питания, формирующих ряд необходимых напряжений.

ШИМ контроллер обеспечивает стабилизацию выходного напряжения путём использования в схеме обратной связи. При увеличении уровня сигнала на вторичной обмотке, схема обратной связи уменьшает величину напряжения на управляющем выводе микросхемы. При этом микросхемой увеличивает длительность сигнала, посылаемого на транзисторный ключ.

В конце каждой линии БП ставится фильтр. Его назначение убирать паразитные пульсации, образованные переходными процессами транзисторов. Состоит он, как и любой сетевой фильтр, из электролитического конденсатора и индуктивности.

Диагностика устройства питания

Перед тем, как перейти непосредственно к диагностике компьютерного прибора питания, нужно убедиться, что неполадка именно в нём. Проще всего, это сделать, подключив заведомо исправный блок к системному блоку. Поиск неисправностей в блоке питания компьютера можно осуществлять по следующей методике:

  1. В случае повреждения БП необходимо попытаться найти пособие по его ремонту, принципиальную электрическую схему, данные о типичных неисправностях.
  2. Проанализировать условия, при каких условиях работал источник питания, исправна ли электрическая сеть.
  3. Используя свои органы чувств определить есть ли запах горевших деталей и элементов, не было ли искрения или вспышки, прислушаться слышны ли посторонние звуки.
  4. Предположить одну неисправность, выделить неисправный элемент. Обычно это самый трудоёмкий и кропотливый процесс. Этот процесс ещё более трудоёмкий, если отсутствует электрическая схема, которая просто необходима при поиске «плавающих» неисправностей. Используя измерительные приборы проследить путь прохождение сигнала неисправности до того элемента, на котором имеется рабочий сигнал. В результате сделать вывод, что сигнал пропадает на предыдущем элементе, который и является нерабочим и требует замены.
  5. После ремонта необходимо протестировать источник питания с максимально возможной его нагрузкой.

Практические рекомендации по ремонту

Если принято решение самостоятельно починить источник питания, в первую очередь он извлекается из корпуса системного блока. После выкручиваются крепёжные винты и снимается защитный кожух. Продув и почистив от пыли, приступают к его изучению. Практический ремонт блока питания компьютера своими руками пошагово можно представить следующим образом:

  1. Внешний осмотр. При нём особое внимание уделяется почерневшим местам на плате и элементах, внешнему виду конденсаторов. Верхушка конденсаторов должна быть плоской, выпуклость говорит о его негодности, внизу у основания не должно быть подтёков. Если имеется кнопка включения, не лишним будет провести её проверку.
  2. Если осмотр не вызвал подозрений, то следующим шагом будет прозвонка входных и выходных цепей на присутствие короткого замыкания (КЗ). При присутствии короткого замыкания выявляется пробитый полупроводниковый элемент, стоящий в цепи с КЗ.
  3. Измеряется сетевое напряжение на конденсаторе выпрямительного блока и проверяется предохранитель. В случае наличия напряжения 300 B переходим к следующему этапу.
  4. Если напряжение отсутствует, при этом сгорает предохранитель, проверяется диодный мост, ключевые транзисторы на короткое замыкание. Резисторы и защитный терморезистор на обрыв.
  5. Проверяется присутствие дежурного напряжения, стабилизированных пяти вольт. Статистика свидетельствует, что когда устройство питания не включается, одна из наиболее распространённых причин, это неисправность схемы дежурного питания, при работоспособных силовых элементах.
  6. Если стабилизированные пять вольт присутствуют, проверяется наличие PS_ON. Когда значение менее четырёх вольт, ищется причина занижения уровня сигнала. Обычно PS_ON формируется от дежурного напряжения через подтягивающий резистор номиналом 1 кОм. Проверяется цепь супервизора, прежде всего на соответствие в цепи значений ёмкости конденсаторов и номиналы резисторов.

В случае, если причина не найдена, проверяется ШИМ контроллер. Для этого понадобится стабилизированный прибор питания на 12 вольт. На плате отключается нога микросхемы, отвечающая за задержку (DTC), а питание источника подаётся на ногу VCC. Осциллографом смотрится наличие генерации сигнала на выводах, подключённых к коллекторам транзисторов, и присутствие опорного напряжения. Если импульсы отсутствуют проверяется промежуточный каскад, собранный чаще всего на маломощных биполярных транзисторах.

Типовые неисправности и проверка элементов

При восстановлении блока питания ПК понадобится использовать различного рода приборы в первую очередь, это мультиметр и желательно осциллограф. С помощью тестера возможно провести измерения на короткое замыкание или обрыв как пассивных, так и активных радиоэлементов. Работоспособность микросхемы, если отсутствуют визуальные признаки выхода её из строя, проверяется с использованием осциллографа. Кроме, измерительной техники для ремонта блока питания ПК, потребуется: паяльник, отсос для припоя, промывочный спирт, вата, олово и канифоль.

Если не запускается блок питания компьютера, возможные неисправности можно представить в виде типичных случаев:

  1. Перегорает предохранитель в первичной цепи. Пробиты диоды в выпрямительном мосту. Звонятся на короткое замыкание элементы разделительного фильтра: B1-B4, C1, C2, R1, R2. Обрыв варисторов и терморезистора TR1, звонятся накоротко переходы силовых транзисторов и вспомогательных Q1-Q4.
  2. Постоянное напряжение пять вольт или три вольта занижены или завышены. Нарушения в работе стабилизирующей цепи, проверяются микросхемы U1, U2. Если проверить ШИМ контроллер не удаётся, то проводится замена микросхемы на идентичную или аналог.
  3. Уровень сигнала на выходе отличается от рабочего. Неисправность в цепи обратной связи. Виновата микросхема ШИМ и радиоэлементы в её обвязке, особое внимание уделяется конденсаторам C и маломощным резисторам R.
  4. Нет сигнала PW_OK. Проверяется присутствие напряжений основных напряжений и сигнала PS_ON. Проводится замена супервизора, отвечающего за контроль выходного сигнала.
  5. Отсутствует сигнал PS_ON. Сгорела микросхема супервизора, элементы обвязки её цепи. Проверить путём замены микросхемы.
  6. Не крутит вентилятор. Замерить напряжение, поступающее на него, оно составляет 12 вольт. Прозвонить терморезистор THR2. Замерить сопротивление выводов вентилятора на отсутствие короткого замыкания. Провести механическую чистку и смазать посадочное место под лопасти вентилятора.

Принципы измерения радиоэлементов

Корпус БП соединён с общим проводом печатной платы. Измерение силовой части источника питания проводится относительно общего провода. Предел на мультиметре выставляется более 300 вольт. Во вторичной части присутствует только постоянное напряжение, не превышающее 25 вольт.

Проверка резисторов осуществляется путём сравнений показаний тестера и маркировки, нанесённой на корпус сопротивления или указанной на схеме. Проверка диодов проводится тестером, если он показывает нулевое сопротивление в оба направления, то делается вывод о его неисправности. Если существует возможность в приборе проверить падение напряжения на диоде, то можно его не выпаивать, величина составляет 0,5−0,7 вольта.

Проверка конденсаторов происходит путём измерения их ёмкости и внутреннего сопротивления, для чего необходим специализированный прибор ESR-метр. При замене следует учитывать, что используются конденсаторы с низким внутренним сопротивлением (ESR). Транзисторы прозванивают на работоспособность p-n переходов или в случае полевых на способность открываться и закрываться.

Проверка отремонтированного источника питания

После того, как АТХ блок отремонтирован, важно правильно провести его первое включение. При этом, если были устранены не все неполадки, возможен выход из строя отремонтированных и новых узлов прибора.

Запуск устройства питания можно осуществить автономно, без использования компьютерного блока. Для этого перемыкается контакт PS_ON с общим проводом. Перед включением на место предохранителя впаивается лампочка 60 Вт, а предохранитель удаляется. Если при включении лампочка начинает ярко светить, то в блоке присутствует короткое замыкание. В случае когда лампа вспыхнет и погаснет, лампу можно выпаивать и устанавливать предохранитель.

Следующий этап проверки БП происходит под нагрузкой. Сначала проверяется наличие дежурного напряжения для этого выход нагружается нагрузкой порядка двух ампер. Если дежурка в порядке, блок питания включается замыканием PS_ON, после чего делаются замеры уровней выходных сигналов. Если есть осциллограф — смотрится пульсация.

РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ — DRIVE2

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Инструментарий.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Визуальный осмотр.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Первичная диагностика.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

Неисправности:

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.

Варистор

Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.

Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.

Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.

Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.

Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.

Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.

Резисторы

Номинал резистора определятся по цветовой маркировке. Резисторы следует менять только на аналогичные, т.к. небольшое отличие в номиналах сопротивления может привести к тому, что резистор будет перегреваться. А если это подтягивающий резистор, то напряжение в цепи может выйти за пределы логического входа, и ШИМ не будет генерировать сигнал Power Good. Если резистор сгорел в уголь, и у вас нет второго такого же БП, чтобы посмотреть его номинал, то считайте, что вам не повезло. Особенно, это касается дешевых БП, на которые, практически не возможно достать принципиальных схем.

Диоды и стабилитроны

Проверяются прозвонкой в обе стороны. Если звонятся в обе стороны как К.З. или разрыв, то не исправны. Сгоревшие диоды следует менять на аналогичные или сходные по характеристикам, внимание обращаем на напряжение, силу тока и частоту работы.

Транзисторы, диодные сборки.

Транзисторы и диодный сборки, которые установлены на радиатор, удобнее всего выпаивать вместе с радиатором. В «первичке» находятся силовые транзисторы, один отвечает за дежурное напряжение, а другие формируют рабочие напряжения 12в и 3,3в. Во вторичке на радиаторе находятся выпрямительные диоды выходных напряжений (диоды Шоттки).

Проверка транзисторов заключается в “позвонке” р-п-переходов, также следует проверить сопротивление между корпусом и радиатором. Транзисторы не должны замыкать на радиатор. Для проверки диодов ставим минусовой щуп мультиметра на центральную ногу, а плюсовым щупом тыкаем в боковые. Падение тока должно быть около 500мА, а в обратном направление должен быть разрыв.

Если все транзисторы и диодные сборки оказались исправные, то не спешите запаивать радиаторы обратно,

Перегорание плавкого предохранителя в блоке питания компьютера

10 декабря 2014

Плавкий предохранитель является неотъемлемым компонентом любого электронного устройства, в том числе компьютерного блока питания. Его предназначение состоит в защите электронных компонентов и всего устройства в целом от скачков напряжения или тока. Также он защищает все элементы от перегорания вследствие воздействия на них короткого замыкания. Плавкий элемент предохранителя перегорает, размыкая электрическую цепь всего устройства. Как заподозрить перегорание плавкого предохранителя? Компьютер не будет никак реагировать на действия пользователя при включении ПК, а БП не будет раскручивать вентилятор. Поскольку напряжение подаваться на материнскую плату не будет, то никакие действия не будут способны оживить компьютер.

Для того, чтобы добраться до предохранителя, необходимо снять блок питания и разобрать его. Предохранитель должен находиться в непосредственной близости от подключенного к основной плате кабеля. Он может быть припаян к плате или вставлен в специальные держатели. В любом случае, не торопитесь сразу выпаивать его. Сначала проверьте предохранитель тестером на предмет возможного обрыва. Если предохранитель выдает минимальный уровень сопротивления, то он является исправным. Если предохранитель не прозванивается или его сопротивление очень велико, то он требует замены. Если предохранитель припаян к плате, то вам придется его выпаять.

Если Вы обладатель стационарного компьютера,
то Вам просто необходим стабилизатор напряжения,
купить который можно тут. 

Для замены приобретите предохранитель с такими же параметрами. Обычно значение тока является равным 4 А. Заменив неисправный предохранитель, попробуйте включить компьютер. Если он нормально включится, значит, перегорание было спровоцировано обычным скачком напряжения. При однократном перегорании можно забыть об этой проблеме. Но если такие перегорания стали регулярными, задумайтесь о приобретении ИБП, который сглаживает все подобные скачки. Впрочем, если вашему БП уже больше двух лет, то и его не мешало бы поменять.

Если после замены новый, заведомо исправный предохранитель опять перегорает, то причиной может явиться возникновение короткого замыкания в цепях вашего блока. Самостоятельно устранить возникшую проблему очень сложно, особенно при отсутствии подобных навыков. Единственным выходом представляется покупка нового БП. В случае если предохранитель после замены не перегорает, но блок питания не гудит, то это указывает на неисправность одного или нескольких компонентов БП, либо неисправность сетевого шнура. После замены шнура можно говорить о неисправности всего блока. Радикальным решением является его замена.

Жизнь как в сказке начинается тогда, когда человек сам пытается сделать ее таковой. Проживая в загородном доме, даже при совсем незначительной площади приусадебного участка, можно создать неповторимый уют, стильный ландшафтный проект, который будет содержать элементы традиционного ландшафтного дизайна с выраженными нотками современного стиля. Московская профильная компания, работающая в сфере ландшафтного дизайна, предлагает услуги населению и…

Выбор деревянной мебели может быть затруднен. Нужно не только подумать о различных стилях, отделках и цветах, но и определиться с материалом. Что имеется в виду под деревом? Когда под описаниями этикеток подразумевается спроектированная древесина, композитная древесина, фанера, шпонированная древесина, МДФ, это легко перепутать. Являются ли эти форматы массивной древесиной или нет? Ответ – нет. Стоит…

Миссия и бизнес-идея В далёком 1943 году Ингвар Кампрад основал компанию. И в начальном этапе она ограничивалась тем, что создатель делал рассылку по почте с небольшим каталогом продукции. А сейчас “Ikea” является мировым лидером в мебельной промышленности. И во многом это стало возможным, благодаря правильно-выбранным ориентирам. Компания нацелена на создание товаров, делающих жизнь комфортной и…

Сложно представить жизнь современного человека без бытовой техники. Стиральная машина заняла прочное место в обиходе каждого из нас. Проблема заключается в том, что какой бы известной компании у вас не была стиральная машина, рано или поздно она выйдет из строя. Хорошая новость в том, что любую из них можно отремонтировать. Как показывает практика, среди различных…

Дизайн интерьера в стиле Вегас – это шик и роскошь в вашем доме или в комнате которую Вы решили использовать для отдыха и посиделок с друзьями. Акцент стоит делать на мебели которую в идеале лучше приобретать в фирменных выставочных залах. Ни один человек попав в атмосферу игорного заведения не устоит перед тем что бы испытать…

Электронный предохранитель для блока питания


Здравствуйте друзья Самоделкины! У многих из вас есть наверное блок питания для подключения к различным электронным устройствам. Но не все блоки защищены от перегрузки и короткого замыкания. Я предлагаю вашему вниманию самоделку, которая защитит ваш блок от этих неприятностей. Вот схема электронного предохранителя

Я нашел ее в интернете. Немного о работе этого предохранителя. Устройство предназначено для бесконтактного аварийного отключения питания от электронного прибора при токах, превышающих определенное значение. Для этих целей ставятся обычно плавкие предохранители, но быстродействие их таково, что сначала выгорает вся электроника и лишь потом сгорает предохранитель. Электронный же предохранитель отключает нагрузку гораздо быстрее и вероятность повреждения от перенапряжения, или непредвиденного повышения тока потребления резко сокращается.

Главным элементом схемы является транзистор VT2, который в нормальном состоянии открыт и падение напряжения на нем минимально. Светодиод VD1 погашен. При увеличении потребляемого тока падение напряжения на транзисторе увеличивается, и начинает открывать транзистор VT1. В результате этого процесса транзистор VT1 быстро открывается, а VT2 – закрывается, и отключает нагрузку от источника питания. При этом загорается индикатор перегрузки светодиод VD1. При устранении короткого замыкания, или же отключении нагрузки от электронного предохранителя, работоспособность устройства восстанавливается.

Подключается предохранитель между выходом блока питания и нагрузкой. Все это показано на схеме. Для сборки этого устройства нам понадобятся следующие детали и инструменты


1 – монтажная или печатная плата небольшого размера, например , 5 на 5 см; транзистор КТ817; транзистор КТ315; светодиод АЛ 307в, желательно красный; резисторы МЛТ 0,25 вт 360 ом; 0,125 вт 1,5 ком; 0,5 вт 91 ом; 0,25 вт 450 ом; монтажные провода. 2 – паяльник; припой; пинцет; кусачки; пассатижи; мультиметр; автомобильная лампа 12 в на 21 вт– для подключения ее вместо нагрузки. Собираем следующим образом.

Шаг 1. Проверяем все детали при помощи мультиметра, так как среди них есть и Б/У






Шаг 2. Спаиваем всю схему на монтажной плате. Проверяем правильность сборки схемы

Шаг 3. Подключаем собранное устройство к выходу блока питания согласно схеме, а к выходу предохранителя подключаем нагрузку, например, автомобильную лампу 12 в 21 вт. При указанных номиналах устройство срабатывает при токе 1А и напряжении питания 9В.

Для изменения характеристик предохранителя номиналы резисторов R3 и R4 придется пересчитать по приведенным ниже формулам.

R3= Uвх *Вст/Iн. maх,

где Uвх –входное напряжение в вольтах; В ст. –статический коэффициент передачи тока транзистора VT2 ; I н.maх – ток нагрузки максимальный в амперах.

R4 при токах до 1,5 А рассчитывается из условия: R4 = 0,05* Uвх( ком). При токах 1,5А--- 10А , R4= 0,02* Uвх .(ком).

Шаг 4 . Проверяем работу электронного предохранителя. Для этого на выход предохранителя подключаем автомобильную лампу 12 в 21 вт с током потребления более 1- 1,5 А. Так как предохранитель рассчитан на срабатывание при токе 1А, то лампа тут же погаснет, и загорится индикатор перегрузки светодиод VD1. В таком состоянии предохранитель будет находиться сколько угодно времени, пока не будет отключена нагрузка (лампа) от его выхода. После отключения нагрузки, работа устройства восстанавливается автоматически. Это говорит о том, что схема работает. При минимуме деталей предохранитель работает довольно – таки не плохо, и лампа цела, и блок питания не сгорел.

Вот вроде бы и все.
Желаю всем вам удачи в создании своих самоделок.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как отремонтировать блок питания компьютера своими руками, инструкция

Прежде чем ремонтировать блок питания, убедитесь, в нем ли причина плохой работы компьютера. Невозможность запустить компьютер может быть обусловлена другими факторами.

Как проверить работоспособность блока питания компьютера АТХ

Проверить работоспособность блока питания возможно без измерительных приборов. При этом, его можно не извлекать из системного блока. Чтоб это сделать, отсоединяем от материнской платы и других устройств все разъемы, идущие от него. Оставляем 1 из 4 контактных разъемов для обеспечения нагрузки. Питание на материнскую плату от блока питания поступает при помощи 20 либо 24 контактного разъема, а так же 4 либо 6 контактного. Чтоб надежно фиксировать контакты, на разъемах предусмотрены защелки. Чтоб вынуть разъем, необходимо взяться пальцами сверху защелки и надавить, плавно покачивая ее из стороны в сторону, тем самым вынув ответную часть.

Два вывода разъема, снятого с материнки, следует закоротить между собой при помощи провода или скрепки. Провода располагаются со стороны защелки. Место установки перемычки показано на фото желтым. Если в разъеме 20 контактов, закоротить необходимо 14 (зеленый, может серый, POWER ON) и 15 (черный, GND) выводы. Если разъем 24 контактный, закорачиваем 16 (зеленый, может серый, POWER ON) и 17 (черный, GND) выводы.

Если замечено вращение крыльчатки кулера, блок питания можно считать исправным. Причиной плохой работы компьютера может быть выход из строя других блоков. Однако, эта проверка не дает полной гарантии на 100% работоспособность компьютера, поскольку отклонение напряжений может быть больше нормы. Для того, чтоб исключить поломку блока питания, подключите его к блоку нагрузок, измеряйте уровень напряжений на выходе. Отклонение напряжение не должно быть больше указанных в таблице.

Выходное напряжение, В+3,3+5,0+12,0-12,0+5,0 SBGND
Цвет проводаоранжевыйкрасныйжелтыйголубойсинийчерный
Допустимое отклонение, %±5±5±5±10±50
Допустимое минимальное напряжение+3,14+4,75+11,40-10,80+4,750
Допустимое максимальное напряжение+3,46+5,25+12,60-13,20+5,250

Отрицательный конец щупа прибора подключается к общему проводу (черный), положительный – к контактам разъема. Проделывать эту операцию можно при включенном компьютере.

Структурная схема блока питания компьютера АТХ

Блок питания — сложное электронное устройство. Чтобы его отремонтировать, необходимо владеть навыками радиотехники, иметь необходимые приборы. В большинстве случаев 80% поломок блоков питания можно устранить в домашних условиях. Для этого нужно уметь паять, работать с отверткой и знать схемы источников питания. Буквально все блоки питания создаются по схеме приведенной ниже. Я отметил те компоненты, которые зачастую выходят из строя. Их можно будет заменить самостоятельно. Во время ремонта блока питания придется воспользоваться цветовой маркировкой проводов, выходящих из него.

Через сетевой шнур подаётся напряжение на разъемные соединения, а уже оттуда на плату блока питания. Главным элементом защиты является предохранитель Пр1, обычно он рассчитан на ток 5 А. В зависимости от того, какой мощности источник питания, предохранитель может быть другого номинала. Фильтр образован конденсаторами С1-С4 и дросселем L1. Он служит для подавления дифференциальных и синфазных помех, возникающих при работе блока питания и поступающих из сети. По такой схеме собранные все сетевые фильтры. Они установлены в изделиях, блоки питания которых не имеют силового трансформатора. А именно: принтерах, видеомагнитофонах, сканерах, телевизорах. Фильтр работает на полную мощность, если подключение к сети осуществляется при помощи заземляющего провода. Жаль, но большинство китайских источников питания не имеют фильтра.

Примером тому служат запаянные перемычки дросселя и отсутствие конденсаторов. Если при ремонте вы обнаружите отсутствие некоторых элементов фильтра, рекомендую их установить. Ниже на фото показать блок питания, фильтр которого установлен.

Чтобы защититься от перенапряжения, устанавливаются варисторы Z1-Z3. Обозначены на фото синим цветом. Они работают по простому принципу. Если напряжение сети нормальное, варисторы имеют большое напряжение, которое никак не влияет на работоспособность схемы. Если уровень напряжение сети превышает допустимый, сопротивление падает, приводя к сгоранию предохранителя. Это спасает основные детали компьютера от поломки. Если блок питания перестал работать от перенапряжения, замените предохранитель.

Некоторые модели блоков питания имеют возможность переключения, что позволяет работать от сети 115 В. В таком случае контакты SW1 (переключатель) должны находиться в замкнутом состоянии. Чтоб конденсаторы С5-С6, включены в сеть после моста VD1-VD4 заряжались плавно, устанавливается термистор RT, имеющий отрицательный ТКС. Когда термистор холодный, его сопротивление равно единицам Ом, в случае прохождения тока через него, он разогревается и сопротивление падает в 20-50 раз. Компьютер имеет функцию дистанционного включения. Для этого в блоке питания установлен дополнительный источник питания с малой мощностью, который постоянно включен. Даже когда компьютер выключен, но вилка не вынута из сети. Он имеет напряжение +5 B_SB и создан по схеме автоколебательного трансформаторного блокинг-генератора всего на 1 тиристоре, который запитан от напряжения диодом VD1-VD4. Это самый ненадежный узел блока питания и производить ремонтные работы сложно.

Напряжения, необходимые для работы устройств системного блока и материнские платы, фильтруются от помех при помощи конденсаторов и дросселя, а затем проводами подаются к самим источникам. Кулер, служащий для охлаждения блока питания, питается от напряжения -12 В.

Как добраться до платы блока питания

Для того, чтоб извлечь блок питания из системного блока, откручиваем 4 винта (отмечены на фото). Перед осмотром отсоединяем проводники, имеющие сильное натяжение. Остальные можно оставить.

Располагаем блок питания, таким образом, чтоб он был на углу системного блока. Выкручиваем 4 винта, помеченных на фото розовым цветом. Чаще всего пара винтов находится под наклейкой. Снимаем ее или продырявливаем. По бокам могут быть наклеены бумажки, мешающие снятию крышки, их тоже следует удалить или разрезать.

Крышка снята, удаляем пыль пылесосом. Это первая причина выхода радиодеталей из строя. Она, покрывая толстым слоем детали, снижает теплоотдачу, что приводит к перегреву и сгоранию.

Поиск неисправности блока питания компьютера АТХ

Первым делом осматриваем все детали, уделяя особое внимание геометрии конденсаторов. Чаще всего, из-за повышенного режимы температуры, они выходят из строя. 50% блоков питания прекращают работу из-за неисправных конденсаторов. Это обусловлено плохой работой кулера. Смазка кулера высыхает и срабатывает, обороты уменьшаются. Охлаждение деталей уменьшается, вследствие чего происходит перегрев. Когда кулер начинает издавать шум, следует его почистить и смазать. Если видно вздутие конденсатора и подтек электролита, нужно его менять. Вздутие может произойти по причине пробоя в изоляции. Бывает такое, что внешне конденсатор цел, однако уровень пульсаций напряжения больше. В этом случае отсутствует контакт между выводом конденсатора и обкладкой. Как говорится, конденсатор находится в обрыве. Проверить обрыв можно при помощи тестера, установив режим измерений на сопротивление. В статье «Измерение сопротивления» описывается технология проверки конденсаторов.

Следующим шагом будет осмотр предохранителей, резисторов, полупроводниковых приборов. Внутри предохранителя по центру имеется тонкая блестящая цельная проволока, иногда она имеет утолщение в средине. Если ее не видно, скорее всего, произошло ее сгорание. Чтоб убедиться так ли это, прозваниваем предохранитель омметром. Если предохранитель сгорел, ремонтируем его или заменяем новым. Перед тем, как его заменить, для проверки блока питания не выпаиваем сгоревший предохранитель из платы, а припаиваем к его выводам жилу медного проводника, диаметр которого 0,18 мм. Если во время включения блока питания проводок не сгорит, имеет смысл заменить предохранитель новым.

Как заменить предохранитель в блоке питания компьютера АТХ

Чаще всего блок питания имеет трубчатый стеклянный предохранитель, который рассчитан на защитный ток 5 А. Чтоб обеспечить надежность, он впаивается в плату. Для этого существуют предохранители, на которых есть выводы под пайку.

Его можно заменить обычным предохранителем, ток защиты которого равен 5 А. К его торцам следует припаять кусочки одножильного провода, диаметр которых 0,5 мм и длина 5 мм.

Остается впаять предохранитель в плату и проверить его в работе.

Если во время включения блока питания произошло повторное сгорание предохранителя, это следствие пробоя переходов в тиристорах, либо выход из строя других элементов. Чтоб отремонтировать такой блок питания, необходимо обладать высокой квалификацией. Можно заменить предохранитель иным, рассчитанным на ток свыше 5 А. Но он все равно сгорит.

Поиск в блоке питания неисправных электролитических конденсаторов

Частой причиной нестабильной работы компьютера и выхода из строя блока питания является вздутие корпуса электролитического конденсатора. Чтоб предотвратить взрыв, на торце конденсатора делают надсечки. Когда давление в конденсаторе возрастает, корпус вздувается или разрывается именно в этом месте. Найти такой конденсатор не составит труда. Основная причина выхода из строя конденсатора заключается в плохой работе кулера или увеличения напряжения.

Глянув на фото, можно заметить, что конденсатор справа вздут и имеет следы подтека электролита, у левого конденсатора торец плоский. Его можно заменить. Чаще всего выходу из строя поддаются конденсаторы с питанием по шине +5 В, потому что запас напряжения мал и равен 6,3 В. Были случаи, когда конденсаторы цепи +5 В были вздуты. Когда я провожу их замену, устанавливаю конденсаторы не менее 10 В.

Чем больше напряжение конденсатора, тем лучше. Важно, чтоб он подошел по размерам. Если конденсатор не вмещается, я беру конденсатор с меньшей емкостью, но большим напряжением. Такая замена не приведет к ухудшению работы компьютера. Произвести замену конденсатора не составит труда, главное уметь обращаться с паяльником. Важно не забывать, что конденсатор со стороны отрицательного вывода имеет маркировку. Она нанесена в виде светлой широкой полосы, новый конденсатор следует устанавливать на то же место, где расположена эта полоса.

Проверка других элементов в блоке питания компьютера АТХ

Простые конденсаторы, а также резисторы не должны быть потемневшими и иметь нагар. Корпус полупроводников не должен иметь сколы и трещины. Если вы решили самостоятельно произвести ремонт, лучше всего заменить элементы, показанные на схеме. Если краска на резисторе потемнела, развалился тиристор, производить замену не имеет смысла.

По той причине, что, скорее всего из строя вышли другие элементы, исправность которых можно обнаружить только при помощи приборов. Если резистор потемнел, это не говорит о том, что он неисправен. Может быть, только краска стала темной, на само сопротивление в норме.

Если вспучились все конденсаторы, смысла проводить их замену я не вижу. Это свидетельствует о том, что схема стабилизации выходного напряжения вышла из строя, конденсаторы получили напряжение, превышающие норму. Этот блок питания можно отремонтировать, если есть навыки работы с измерительными приборами и электрическими элементами. Однако такой ремонт хорошо ударит по карману.

По материалам сайта: ydoma.info

Предохранители. Может кому пригодиться. — DRIVE2

Иногда автолюбителю приходиться сталкиваться с тем, что перестаёт работать то или иное электрооборудование автомобиля. Причиной часто может быть обычное перегорание предохранителя. Для быстрой замены неисправного предохранителя нужно знать, где они находятся, как они выглядят, «вычислить» неисправные и правильно заменить их.

Где находятся предохранители?

Ни в одном автомобиле предохранители не разбросаны по кузову, а находятся в определенном месте, в блоке предохранителей.

Блок предохранителей

Практически в любом автомобиле имеются два блока предохранителей и наш автомобиль не исключение. Как правило, первый располагается под капотом у левого стакана (именуемый иногда чёрным ящиков в сокращении ЧЯ), второй – в салоне автомобиля под панелью, под центральной торпедой.

Схема предохранителей

1) К1 – реле очистителей фар;

2) К2 – реле указателей поворота и аварийной сигнализации;

3) К3 – реле очистителя ветрового стекла;

4) К4 – реле контроля исправности ламп;

5) К5 – реле стеклоподъёмников;

6) К6 – реле звуковых сигналов;

7) К7 – реле обогрева заднего стекла;

8) К8 – реле дальнего света фар;

9) К9 – реле ближнего света фар;

10)F1-F20 – плавкие предохранители.

Второй “блок” находится под торпедой со стороны передних пассажирских ног. Для доступа к нему нужно всего лишь открутить несколько креплений при помощи крестовой отвертки. Почему в кавычках, да потому что как такогого блока нет, там находится ЭБУ (мозги) и 3 предохранителя + 3 реле.

Описание предохранителей и реле на ЭБУ

Порядок предохранителей с верху в низ:

1 – предохранитель на топливный насос (15А)

2- предохранитель на реле электровентилятора радиатора, клапан продувки адсорбера, ДС, ДК, ДМРВ (7,5А)

3 — предохранитель на электронный блок управления, модуль зажигания (7.5А)

Стоит отметить, что на первых моделях все предохранители окло ЭБУ были номиналом в 15А.

Порядок реле с верху в низ:

1 – Реле включения топливного насоса

2 – реле включения электровентилятора радиатора охлаждения

3- главное реле

Какой предохранитель сгорел?

В вашем авто, как и в любом другом находится довольно много предохранителей. И каждый защищает определенную лампочку или прибор. Как же узнать, какой перегорел?

Всё просто! Например, если не работает стеклоочиститель, то вскрываем блок и ищем на крышке соответствующий значок. Положение предохранителя в блоке соответствует положению рисунка на крышке.

Замена предохранителей

Чтобы получить доступ к предохранителям, надо снять крышку блока. Это легко можно сделать голыми руками: одной рукой нажимаем на защелку, другой – поднимаем крышку.

Как проверить предохранитель?

Далее нужно найти неисправный. Есть два способа (в зависимости от типа предохранителя).

Мы либо просто вынимаем и смотрим – цела ли средняя часть ( на фото – слева перегоревший, справа исправный)

Второй способ более точный. Дело в том что человеческий глаз может не заметить сгоревшую перемычку. Делаем следующее: Включаем неработающую цепь ( например габариты), не вынимая предохранитель смотрим напряжение на одном конце предохранителя, потом на другом. если на одном конце напряжение есть, а на другом конце -нет, то предохранитель сгорел.

Перегорает предохранитель

Если предохранители часто перегорают, то это значит, что у вас имеются проблемы с проводкой, которые необходимо устранить. В таком случае лучше доверить проверку электрики специалисту.

РЕМОНТ БП ПК - КОНДЕНСАТОРЫ И ПРЕДОХРАНИТЕЛИ

Продолжаем цикл статей посвященных ремонту компьютерных блоков питания АТХ. Итак, в предыдущей статье, мы заполучили на ремонт нерабочий блок питания, и приступили к диагностике. В этой разберем, какие действия следует произвести, если видим вздувшиеся электролитические конденсаторы, или предохранитель блока питания в обрыве. Включать блок питания для проверки со сгоревшим предохранителем, следует только через лампу мощностью 200 ватт, подключенную проводами с крокодилами, к выводам предохранителя. Никаких жучков ! Даже то, что блок питания стартует, это совсем не обязательное условие для того, чтобы считать блок питания рабочим. Бывает и такое, что блок питания стартует, но работает не стабильно. В таком случае с очень высокой степенью вероятности, мы  можем попытаться визуально определить поломку, но есть одно но... Заключается поломка в увеличившимся ESR электролитических конденсаторов, или по русски ЭПС (эквивалентное последовательное сопротивление). Измеряют ESR специальным прибором, ESR метром.

Такие конденсаторы очень плохо работают в высокочастотных цепях, в таких, как в этих блоках питания. Визуально это проявляется в образовании припухлости в верхней части конденсатора, а иногда в некоторых случаях, он даже вскрывается при этом. Особо нетерпеливые могут сказать, а зачем что-то измерять, если это итак видно визуально? Дело в том что “дуются” конденсаторы относительно высокого номинала, где-то от 470-1000 мкФ.

Конденсаторы на 1-10, 22-47 мкФ и подобные, маленьких номиналов, они не вздуваются, и визально ничем не отличаются от рабочих, и определить дефектные, можно только с помощью прибора. Сразу скажу прибор покупать, или собирать для разового ремонта, абсолютно не обязательно, в таком случае достаточно просто заменить на новые (!) все электролитические конденсаторы в проблемном узле. Почему именно на новые? Потому что выпаянные с доноров б\у конденсаторы, могут быть также с уже завышенным ESR, или на грани. Если же кто-то собирается заниматься ремонтом импульсных блоков питания на постоянной основе, тому конечно-же будет необходим прибор ESR метр.

У меня их два, самодельный, ESR метр, приставка к мультиметру, позволяющий приблизительно тестировать конденсаторы без выпаивания, и покупной с Али экспресс, который показывает значения сразу в Омах, но только после того как вы выпаяете конденсатор из платы. Я его оформил в корпусе, для удобства работы с ним:

Такое сочетание двух приборов очень удобно, за 3 минуты перемерять самодельным ESR метром все электролитические конденсаторы на плате, и затем перепаять нужные конденсаторы, выпаянные предварительно с доноров, (других блоков питания), проверив их на китайском ESR метре.

Схемы обоих приборов приведены ниже. Транзистор-тестер Т4:

И самодельный прибор:

Мой прибор подключается к цифровому мультиметру, и выдает показания в милливольтах, при значении которых, выше пороговых, определенных путем измерения низкоомных резисторов, и сравнения по таблице предельных значений ESR, конденсатор подлежит замене.

На практике это выглядит намного проще, чем в теории.

Таблица значений ESR конденсаторов приведена ниже:

Второй прибор, который будет нужен при ремонтах импульсных блоков питания, это обычный цифровой мультиметр. Для каких целей он применяется? Для тех же, что и при всех других ремонтах: проверка (прозвонка) предохранителя, диодов, транзисторов, резисторов. А для этого мы должны уметь ориентироваться по схеме, и находить нужные детали на печатной плате. Соблюдайте меры электробезопасности при ремонтах техники! После вынимания шнура питания из розетки, помните, что на конденсаторах фильтра (больших бочонках), еще какое-то время остается заряд. На схеме они находятся здесь:

Как вы видите параллельно им подключены гасящие резисторы, но так как они имеют относительно большой номинал, требуется время, чтобы конденсаторы полностью разрядились. Поэтому подождите 5 минут, перед тем, как начинать откручивать плату, переворачивать ее, и проводить какие либо измерения на ней.

Выше приведена для ознакомления схема одной из моделей блоков питания, мощностью 350 ватт. Она кликабельна. По ней мы и разберем, как выглядят те детали, которые нам необходимо проверить при ремонте, в случае если у нас будет сгоревший предохранитель.

Диодный мост

Обозначение на схеме:

Внешний вид:

Он может быть как в виде одной детали с 4 выводами, собственно мостика, так и набран из отдельных 4 диодов, включенных по мостовой схеме. Проверяется в режиме звуковой прозвонки, касаясь его 4 ножек, попеременно во всех вариантах: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. Если в каком либо из случаев звучит звуковой сигнал, мост однозначно под замену. После предварительной прозвонки, надо найти схему диодного моста и вызвонить p-n переходы, возможно в мостике не короткое замыкание, а обрыв.

Выходные транзисторы

Обозначение и расположение на схеме:

Внешний вид:

Они расположены на радиаторе, ближнем к большим конденсаторам (бочонкам). Проверяются транзисторы мультиметром в режиме звуковой прозвонки, аналогично диодам. Условно можно представить при проверке биполярный транзистора, как два диода, соединенных или катодами или анодами, и проверить их как диоды, в соответствии с цоколевкой, которую можно посмотреть, скачав Даташит, на данный транзистор. Если потребуется заменить транзистор установленный на радиатор, с этим могут возникнуть проблемы. Иногда вплотную к транзисторам бывает установлен трансформатор, и подлезть отверткой просто невозможно. В таком случае следует воспользоваться прямыми утконосами, понемногу поворачивая ими сбоку головку винта. При замене транзистора, обязательно проверьте и его обвязку, те детали, которые участвуют в его работе, на схеме выделены красным:

В особо тяжелых случаях может потребоваться выпаивание двух выходных транзисторов, и третьего, установленного на этот же радиатор. А затем нужно снять и сам радиатор. Каким образом можно быстро демонтировать транзисторы стоящие на радиаторе? Оловоотсос, оплетка, паяльный фен, здесь мало эффективны. Поможет набор демонтажных игл с Али экспресс.

Просто подбираем иглу нужного диаметра, чтобы одевалась на вывод и проходила в отверстие в плате, прогреваем контакт вывода, и одновременно вращая иглу, насаживаем ее на вывод. Пример использования игл для демонтажа показан на следующем фото:

Проделав это со всеми тремя выводами, мы можем открутить винт крепления, и снять транзистор с радиатора. При установке транзистора обратно на радиатор, не забываем про изолирующие прокладки, между радиатором и транзистором, и шайбу, одевающуюся на винт крепления транзистора к радиатору.

Тем кто ранее не ремонтировал блоки питания АТХ, думаю будет полезна следующая картинка, которая поясняет назначение деталей, на плате блока питания.

В следующей статье мы разберем, из-за чего возникает свист дежурки, чем чревато повышение напряжения на ней, и как это исправить.

   Специально для сайта Схемы и радиотехника - AKV.

   Ремонт электроники

Как взять питание с блока предохранителей без вмешательства в проводку. — DRIVE2

Добрый день, коллеги!

При подключении в автомобиле различных нештатных устройств, иногда возникает необходимость откуда-то взять питание 12В. Часто для этого вскрывают изоляцию штатной проводки автомобиля и подпаивают или подматывают свои провода с последующей изоляцией соединения. Это вполне приемлемый способ, но если автомобиль находится на гарантии, автовладелец рискует ее лишиться, если вмешательство в проводку будет обнаружено, например, во время планового ТО или гарантийного ремонта.

В то же время, в любом автомобиля есть как минимум один, а обычно несколько, штатных блоков предохранителей, которые дают нам прекрасный источник питания без необходимости вмешательства в проводку.

Для этих целей, заботливая промышленность Китайской Народной Республики освоила производство специальной вставки-ответвителя для автомобильных блоков предохранителей. Данный ответвитель состоит из контактной колодки под два стандартных автомобильных предохранителя и провода ответвления для подключения дополнительного потребителя. Я покупал вставки для предохранителей размерности "Mini", но в продаже есть и под предохранители других размеров (фото 1-4).

1.


2. Предохранители ''Mini''.


Полный размер

3.


Полный размер

4.

Чтобы подключиться к блоку предохранителей, извлекаем из него штатный предохранитель той цепи, к которой хотим подключиться, и переставляем его в нашу вставку. Рядом устанавливаем второй предохранитель, которым будем защищать подключаемого нового потребителя. При этом следует правильно сориентировать вставку в гнезде для штатного предохранителя, так как питание можно взять как ДО штатного предохранителя, так и ПОСЛЕ. Это может иметь значение для подключения мощных потребителей с большим током потребления, для которых штатный предохранитель не подходит по номиналу.

Штатный предохранитель будет защищать штатную цепь, как и раньше, а дополнительная цепь будет подключена через отдельный предохранитель. Идущий в комплекте предохранитель плохого качества, его лучше сразу заменить на нормальный (фото 5-6).

Полный размер

5. Предохранитель из комплекта. Качество плохое.


Полный размер

6. Ставим качественные предохранители. 15А — штатная цепь, 10А — дополнительный потребитель.

Устанавливаем вставку на место штатного предохранителя, и можем подключать к проводу ответвления наше новое устройство. Изначально, на проводе ответвления установлена цилиндрическая клемма под обжим провода, но для удобства демонтажа, я обычно заменяю клемму на электрический разъем (фото 7).

Полный размер

7.

Таким образом можно подключить к блоку предохранителей сразу несколько дополнительных потребителей (фото 8-9). При необходимости, вся эта дополнительная проводка легко демонтируется без следа.

Полный размер

8.


Полный размер

9.

Есть у данной вставки и небольшой минус. Так как в штатном блоке предохранители и реле обычно располагаются близко друг к другу, то вставке могут помешать соседние предохранители или реле. В связи с этим, приходится подбирать точки подключения, чтобы ничто не мешало установке (фото 10). Во многих блоках предохранителей имеются неиспользованные или резервные цепи, которые прекрасно подходят для этих целей.

Полный размер

10.

Ссылки на данную вставку в китайском интернет-магазине Aliexpress:

Ссылка 1.
Ссылка 2.

Бывают также просто ответвители от предохранителя (фото 11).

11.

Ссылки в российском интернет-магазине 12VI (по отзывам в комментариях, качество хорошее):

Ссылка 1.
Ссылка 2.
Ссылка 3.

Всем хорошего дня, до связи!</b>

Дата: 2017-03

Восстановление предохранителя - Ремонт компьютеров ноутбуков аккумуляторов Мариуполь

        Процарапать защитный слой лака в месте, где есть переходное отверстие.
Залудить открывшееся переходное отверстие. Припаять два отрезка монтажного олова к переходному отверстию. Вторые концы отрезков припаять к силовым контактам предохранителя.
        Обязательно проверяйте тестером наличие надёжного соединения в месте Вашей пайки и величину оплавляющего резистора, который расположен в предохранителе (от 10 Ом до 70 Ом).

        После восстановления предохранителя, следует разорвать цепь управления предохранителем (между третьим контактом предохранителя и ключом, который им управляет). В разрыв этой цепи следует включить микролампочку на 12В. На многих контроллерах эта цепь уже имеет технологический разрыв, который закрыт каплей олова. Вам следует снять каплю и на её место припаять микролампочку.
        Данная процедура выполняется для того, чтобы предотвратить оплавление предохранителя. Если контроллер даст команду на оплавление, то микролампочка будет светиться, а предохранитель останется не оплавлен. Таким образом мы «убьём двух зайцев» - визуально будем контролировать состояние контроллера (лок есть или нет) и не испортим ранее восстановленный предохранитель.
       Расспространено мнение, что при ремонте аккумуляторов, достаточно восстановить предохранитель и снять ключик оплавляющий его (или разорвать эту цепь) .
Но такое мнение ошибочно. Дело в том, что во многих контроллерах качественно описана процедура самодиагностики.
По старту контроллера, он самотестирует плату. В том числе и цепи управления предохранителем. И если контроллер не видит отзыв на команду оплавления (которая подаётся коротким импульсом), то он вправе заблокировать работу аккумулятора.
       Для правильной работы требуется наличие ключа, предохранителя и микролампочки. Иначе работа контроллера непредсказуема.

        После завершения работ по ремонту аккумулятора ОБЯЗАТЕЛЬНО следует снять микролампочку и восстановить цепь управления предохранителем.


Смотрите также

Описание: