Где находится серое вещество


Серое и белое вещество головного мозга: функции в ЦНС

Все структуры нервной системы состоят из нейронов, которые образуют серое и белое вещество мозговой ткани.

Распределение этих структур зависит от функциональности отдела к которому они принадлежат: например, серое вещество головного мозга покрывает белую субстанцию, тогда как в спинном отделе ядра, состоящие из серых нейронов, находятся внутри мозгового канала, образованного белым компонентом.

Как устроена нервная система, что такое белое вещество серое вещество

Нервная система человека имеет сложное строение. Условно специалисты выделяют периферическую и центральную нервную систему человека.

Центральная НС человека включает в себя все отделы головного мозга (конечный, средний, продолговатый, промежуточный отдел, мозжечок), а также спинной мозг. Эти составляющие контролируют работу всех систем организма, связывают их между собой и обеспечивают их слаженную работу в ответ постороннее воздействие.

Функциональные особенности ЦНС:

  • Головной мозг человека располагается в черепной коробке и выполняет контролирующую роль: участвует в обработке информации поступившей из окружающей среды и регулирует жизнедеятельность всех систем человеческого организма, является своеобразным штурвалом.
  • Основная функция спинного отдела ЦНС заключается в передаче информации от нервных центров, расположенных в других частях тела к головному мозгу. Также с его поддержкой выполняются двигательные реакции на внешние раздражители (при помощи рефлексов).

Периферическая НС включает в себя все ответвления спинного и головного мозга, находящиеся за пределами ЦНС или, другими словами, на периферии. К ней относятся черепные и спинальные нервы, а также вегетативные нервные волокна, соединяющие структуры ЦНС с другими частями тела человека. С ее помощью происходит неосознанное (на уровне рефлексов) управление жизненно важными функциями тех или иных органов, будь то сердцебиение или автоматическое сокращение мышц в ответ на внешние раздражители (например, моргание).

Эта часть нервной системы особо уязвима для воздействия различных токсинов или механических повреждений, так как у нее нет защиты в виде костной ткани или специального барьера, разделяющего кровь и ее составляющие.

К периферической НС относятся:

  • Вегетативная или автономная НС. Управляется подсознанием человека, контролирует выполнение жизненно важных функций организма. Основной задачей этой части НС является регуляция внутренней среды тела, посредством кровеносной, эндокринной системы, а также различными железами внутренней и внешней секреции.Анатомически в ней выделяют симпатическую, парасимпатическую и мета симпатическую НС. При этом центры или вегетативные ядра, состоящие из серого мозгового компонента, находятся в спинном и головном отделе ЦНС, а последнюю представляют скопления нейронов, расположенные в стенках мочевого пузыря, желудочного тракта и других органах.
  • Соматическая НС. Отвечает за двигательную функцию человека — с ее помощью передаются афферентные (входящие) сигналы к нейронам ЦНС, откуда после обработки через эфферентные (нисходящих двигательных) волокна поступает информация к конечностям и органам человеческого тела для воспроизведения соответствующего движения. Ее нейроны имеют особое строение, позволяющее передавать данные на большие расстояния. Так, чаще всего тело нейрона располагается в непосредственной близости от отделов ЦНС или входят в него, но при этом его аксон тянется дальше, достигая в результате поверхности кожи или мышц. Посредством этой части НС происходит выполнение различных защитных рефлексов, которые выполняются на уровне подсознания. Такая особенность достигается наличием рефлекторных дуг, позволяющих выполнять действие без участия главного центра, так как в этом случае нервные волокна соединяют спинной отдел ЦНС с участком тела напрямую. При этом конечным пунктом восприятия информации является кора больших полушарий, где остаются воспоминания обо всех выполняемых действиях. Таким образом, соматическая НС участвует в обучении, защите и возможности обработки информации поступившей из окружающей среды.
  • Некоторые специалисты относят к периферической НС сенсорную нервную систему человека. В нее входят несколько групп нейронов, расположенных на периферии ЦНС, которые отвечают за восприятие информации из окружающей среды посредством органов слуха, зрения, осязания, вкуса и обоняния. Отвечает за физическое восприятие таких понятий, как температура, давление, звук.

Как уже говорилось ранее, структуры нервной системы человека представлены белой и серой субстанцией, при этом каждая из них имеет собственное строение и содержит разные типы нервных клеток, которые отличаются по внешнему виду и функциональности.

Так, белое вещество в основном выполняет проводящую функцию и передает нервные импульсы от одних частей мозгового вещества к другим. Такая особенность обусловлена строением нейронов этой структуры, основную массу которой составляют длинные отростки или аксоны, покрытые миелином, обладающим высокой проводимостью электрического импульса (порядком 100 м/с).

Аксоны нейронов условно можно разделить на 2 основные группы:

  1. Длинные (интракортикальные), соединяют дальние участки, находятся в глубинах мозгового вещества.
  2. Короткие отростки, связывают серые клетки коры и близлежащие структуры белого вещества, имеют второе название — субкортикальные.

Также в зависимости от места расположения и функциональности волокна нервных клеток белого вещества принято выделять следующие группы:

  • Ассоциативные. Отличаются размером: могут быть как длинными, так и короткими и выполнять различные задачи, но при этом сосредотачиваются в одном из полушарий. Длинные аксоны отвечают за связь удаленных извилин, а короткие — обединяют близлежащие структуры.
  • Комиссуральные. Соединяют между собой 2 полушария и обеспечивают их слаженную работу, находящихся в противоположных частях. Подобные аксоны можно рассмотреть при анатомическом изучении этого органа, так как из них состоит передняя спайка, мозолистое тело, а также спайка свода.Проекционные аксоны объединяют кору с другими центрами ЦНС, в том числе со спинным мозгом.Существует несколько видов подобных волокон: одни связывают таламус с корой, вторые — кору с ядрами моста, а третьи проводят импульсы, благодаря которым производится команда и управление теми или иными конечностями.

Выделяют 2 вида подобных волокон, которые отличаются направленностью передаваемой информации:

  1. Афферентные. По ним информация поступает от нижележащих структур мозга, систем органов и тканей к коре и подкорковым структурам, которые занимаются обработкой поступившей информации.
  2. Эфференитные. Проводят ответный импульс от центров высшей психической деятельности к подконтрольным структурам.

Противоположностью белому мозговому веществу является серый компонент, состоящий, как и предшественник, из скопления нейронов — с их помощью происходит выполнение всех функций высшей нервной деятельности человека.

Основная его часть располагается на поверхности белого мозгового компонента, находящегося в голове, и составляет кору, имеющую условно серый цвет. Также оно залегает в глубине отделов головного и по всей протяженности спинного мозга в виде ядер. В состав серого вещества входят несколько групп нервных клеток, их дендридов и аксонов, а также глиальные ткани, выполняющие вспомогательную функцию.

Ветвистые отростки нейронов или дендриды, через синапсы, получают и передают информацию от аксонов соседних клеток к собственной. От густоты их разветвления зависит качество импульса — чем больше развиты ответвления главного волокна и обширнее сеть синапсов, тем больше к ядру клетки будет поступать данных от соседних.

Так как нейроны и соответственно ядра клеток серого вещества располагаются близко друг к другу, то им не требуются длинные аксоны, при этом основной поток информации передается через дендридносинапную связь близлежащих клеток. По этой же причине их аксоны не нуждаются в миелиновой оболочке.

Отдельные скопления серого вещества называются ядрами, каждое из которых контролирует выполнение определенной жизненно важной функции организма, при этом их можно условно поделить на 2 большие группы: относящиеся к центральной нервной системе и отвечающие за периферическую нервную систему.

Анатомическое строение нейронов серого вещества во всех отделах ЦНС имеет похожую структуру и примерно одинаковый состав. Поэтому закономерность расположения нейронов в конечном отделе ничем не отличается от совокупности этих элементов в других структурах.

Где находится серое вещество

Серое вещество головного мозга представлено главным образом скоплением большого количества нейронов с безмиелиновыми аксонами, вплетенными в глиальные ткани, их дендридами и кровеносными капиллярами, которые обеспечивают их метаболизм.

Наибольшее скопление нейронов серого цвета образует кору больших полушарий, которая покрывает поверхность конечного отдела. Толщина этой структуры составляет не более 0,5 см на всем протяжении, но занимает более 40% объема конечного мозга, и при этом ее поверхность во много раз превышает плоскость больших полушарий. Такая характерная обуславливается наличием морщин и извилин, в которых содержится до 2/3 площади всей коры.

Также скопления серого вещества в головном мозге образуют особые нервные центры или ядра, которые имеют характерную форму и свое функциональное предназначение. Особенностью строения этой структуры является то, что под понятием «ядро» подразумевается парное или дисперсное образование из клеток нейронов, не имеющих миелиновую оболочку.

Существует большое количество ядер нервной системы, которые для общего понятия и легкости восприятия принято идентифицировать соответствующие той операции, которую они выполняют, а также их внешнему виду. Такое распределение не всегда корректно отображает действительность, так как головной мозг является малоизученной структурой ЦНС и иногда ученые ошибаются.

Основное скопление ядер находится внутри ствола, например, в таламусе или гипоталамусе. При этом в переднем отделе располагаются базальные ганглии, которые в какой-то степени влияют на эмоциональное поведение человека, участвуют в поддержании мышечного тонуса.

Серое вещество мозжечка, наподобие коры конечного отдела мозга, покрывает полушария и червь по периферии. Также его отдельные образуют парные ядра в глубине тела этого рудимента.

Анатомически в нем выделяют следующие виды ядер:

  • Зубчатое. Располагается в нижней части белого вещества мозжечка, его проводящие пути отвечают за двигательную функцию скелетных мышц, а также за зрительно-пространственную ориентацию человека в пространстве.
  • Шаровидное и пробковидное. Обрабатывают информацию, полученную от червя, а также получают афферентные сигналы от частей мозга, отвечающие за соматосенсорные, слуховые и визуальные данные.
  • Ядро шатра. Находится в шатре червя мозжечка и принимает информацию о положении тела человека в пространстве согласно полученным данным от органов чувств и вестибулярного аппарата.

Характерной особенностью строения спинного мозга является то, что серая субстанция в виде ядер находится внутри белого компонента, но при этом является его неотъемлемой частью. Наиболее детально такое расположение можно увидеть при изучении спинного отдела ЦНС в поперечном разрезе, где наглядно будет виден четкий переход серого вещества в белое от центра к периферии.

Где располагается белое вещество

Белое вещество головного мозга начинает формироваться к 6 месяцам внутриутробного развития человека, при этом его образование не останавливается на протяжении последующих лет жизни. Такая особенность позволяет организму тренироваться и накапливать полученный опыт.

Само по себе белое вещество является противоположностью серого и представляет из себя густую сеть ответвлений нейронов, которые осуществляют передачу информации от коры больших полушарий к нижележащим нервным центрам спинного и головного мозга. При этом на функционирование связи влияет количество и качество образованных нервных путей: чем гуще и прочнее связь между структурами, тем развитие и талантливее оказывается индивид.

Наибольшее скопление белого вещества находится в черепной коробке и представлено большими долями. Оно и понятно: в головном мозге располагаются все центры управления организмом, а также в его структурах происходит формирование и выполнение высших психических задач, наличие которых отличает человека от остального животного мира. При этом белое вещество кроме основной выполняет еще и защитную функцию: по внешнему виду и физическим характеристикам оно представляет собой студенистую жироподобную массу, которая играет роль амортизатора для нижележащих структур.

Также белое вещество образует периферическую мозговую оболочку для серого вещества спинного мозга — как и головной отдел ЦНС, он содержит все виды волокон (комиссуральные, ассоциативные и проекционные), с характерной миелиновой окраской, которые собраны в особые пучки, обеспечивающие связь спинного мозга с другими частями периферической и центральной НС.

За что отвечает серое вещество головного мозга

Работа по изучению головного мозга, как контролирующего органа началась еще в 18 веке и продолжается до сих пор. Возможно, этот процесс проходил намного быстрее, если бы не существовало запрета на анатомическое изучение мозговых тканей и препарирование тела умершего человека на протяжении долгого времени. Также ситуация осложняется тем, что головной мозг — довольно труднодоступный орган, который снаружи надежно защищен костями черепа и большим количеством оболочек, повреждение которых способно негативно влиять на подопытного.

Итак, головной мозг человека включает в себя несколько функциональных скоплений нейронов серого вещества, будь то его кора или ядра, отвечающие за выполнение отдельных движений или контролирующие деятельность некоторых жизненно важных систем организма.

Кора больших полушарий — относительно молодая структура, которая начала формироваться в процессе эволюционного развития человека. Ее наличие и степень развитости является отличительной чертой человеческого мозга, так как у большинства представителей млекопитающих серое вещество коры имеет ограниченные размеры и не так функционально.

Основная функция серого вещества коры больших полушарий — выполнение высших психиатрических задач, которые ставит индивид перед собой в процессе обучения новым навыкам, при этом опыт может быть получен из других источников или окружающей среды. Также выражением работы коры больших полушарий является звуковое воспроизведение речи и внутреннее ее проявление, которая еще в народе обозначается понятием «про себя».

Также серое вещество образует ядра и небольшие пластины, которые присутствует и в других частях головного мозга.

Продолговатый мозг, как функциональное продолжение спинного отдела сочетает в себе характерные черты строения обоих отделов ЦНС. Так же как и спинной, он включает большое количество проводящих волокон, основной задачей которых является осуществление связи конечного отдела со спинным. При этом серое вещество продолговатого мозга уже не имеет характерной непрерывной структуры, как в коре полушарий, а залегает в виде ядер.

Этот отдел, так же как и вся ЦНС, регулирует выполнение физиологических процессов, от которых зависит жизнь человека. К ним относятся следующие операции: дыхание, сердцебиение, выделение, пищеварение, а также защитные рефлекторные движения (например, моргание или чихание) и мышечный тонус. Через него проходят нервные пути и центры, отвечающие за координацию и пространственное положение тела в окружающей среде посредством ядер вестибулярного аппарата.

Характерной особенностью расположения и строения серого вещества в среднем отделе мозга является то, что оно сочетает в себе черты строения продолговатого и конечного отдела, при этом парные скопления серого вещества образуют ядра, а отдельно рассеянные нейроны — центральную около водопроводную структуру и так называемую черную субстанцию.

Анатомическое строение ядер и этого отдела не отличается от строения этой структуры в продолговатом мозге. Основной задачей этих центров является восприятие информации из окружающей среды посредством органов слуха, зрения, обоняния, а также участвуют в выполнении некоторых условных рефлексов, например, поворот головы в сторону громкого звука или яркого света.

Отдельного внимания требуют другие структуры среднего отдела: центральное серое вещество и черная субстанция. Они обладают рядом особенностей, обусловленных их строением и предназначением.

Прослойка черной субстанции условно отделяет ножку мозга от покрышки и регулирует двигательную функцию конечностей. Замечено, что при поражении этой составляющей НС, у заболевшего развивается болезнь Паркинсона, тремор конечностей, также отмечается снижение моторики.

Центральное около водопроводное серое вещество представляет собой негустое рассеянное скопление безмиелиновых нейронов окружающих водопровод. Служит проводником и накопителем информации от нижележащих структур (ретикулярной формации, ядер вестибулярного аппарата, гипоталамуса и др.), а также участвует в формировании болевых ощущений агрессивного поведения и контролирует половое поведение человека.

За что отвечает белое вещество

Как уже говорилось ранее, белое вещество головного мозга выполняет несколько задач: в первую очередь оно является связующим звеном серого вещества коры и других функциональных скоплений нейронов, расположенных в глубинных структурах.

Известны и другие функции белого вещества головного мозга — оно выполняет роль связующего звена между большими полушариями посредством мозолистого тела, а также обеспечивает взаимодействие удаленных участков коры с другими частями нервной системы, в том числе со спинным мозгом, при помощи специфичных волокон.

Главной его особенностью и отличительной чертой является то, что белое вещество образовано скоплением длинных нервных отростков или волокон, покрытых миелиновой оболочкой, которая обеспечивает быструю передачу электрических импульсов и соответствующую информацию к функциональным центрам.

Белое вещество конечного мозга образует большие полушария, которые являются наиболее развитой и массивной структурой ЦНС. Такая особенность обуславливается наличием большого количества проекционных полей в коре, которые требуют для своего нормального функционирования развитой сети связующих волокон. В ином случае нарушается связь и параллельное выполнение высших психических функций головного мозга: например, речь становится медленной и нечленораздельной.

В среднем отделе мозга белое вещество располагается главным образом по всей его поверхности, а также вентрально от серого вещества холмиков четверохолмия. Еще из него состоят верхние ножки, соединяющие средний мозг с мозжечком и передающие эфферентную информацию от этого двигательного центра в другие отделы ЦНС.

Белое вещество продолговатого отдела включает в себя все виды волокон: и длинные и короткие. Длинные выполняют транзиторную функцию и связывают нисходящие пирамидальные пути со спинными нервными канатиками, а также осуществляют слаженную работу продолговатого мозга с таламическими структурами, короткие же образуют связь между ядрами этого отдела и направляют информацию в выше лежащие структуры ЦНС.

Чем образовано серое вещество

Как уже говорилось ранее, мозговая ткань имеет сложное строение. Основными составляющими материями НС человека, как и других млекопитающих, является серое и белое вещество, при этом первый компонент представляет собой густое скопление тел нейронов, их дендридов и глиальных клеток, являющихся основой или костяком этой субстанции.

В основном серое вещество мозговой ткани образуют скопления тел различных нейронов и их дендриды. Функциональной особенностью этой единицы НС является то, что эти клетки способны возбуждаться с помощью специального импульса, обрабатывать, передавать и хранить полученную таким образом информацию.

Как и любая другая живая клетка в организме он имеет собственное ядро, оболочку и отростки, объединяющие группу подобных структур в единое целое. Изучение этой единицы НС осложняется не только малым размером, но и расположением, так как наибольшее их скопление чаще всего находится в труднодоступных местах, вмешательство в которые чревато плачевными последствиями.

Функциональное значение глиальных клеток весьма разнообразно: они служат барьером для других структур организма, но в некоторых случаях выполняют защитную функцию. Особенностью глий является способность к восстановлению и делению, чем не могут похвастаться другие нервные клетки. Прослойка из них образует особую ткань, которая называется нейроглией и располагается во всех частях НС.

Так как нейроны лишены защиты от негативного воздействия окружающей среды и беспомощны перед механическими повреждениями, то в некоторых случаях глии способны фагоцировать или усваивать поступивший чужеродный антиген, представляющий для серых клеток опасность.

Из чего состоит белое вещество

Белое вещество представляет собой особый компонент центральной нервной системы, представленный пучками нервных волокон, покрытых особой миелиновой оболочкой, благодаря которой происходит выполнение основного предназначения этой мозговой структуры, заключающееся в передаче информации от главных функциональных центров нервной системы к нижележащим частям НС.

Миелиновая оболочка позволяет передать электрический импульс на большие расстояния с высокой скоростью без потерь. Является производной глиальных клеток и благодаря особому строению (оболочка формируются из плоского выроста тела глии лишенного цитоплазмы), оборачивает нервное волокно по периферии несколько раз, прерываясь только в области перехватов.

Такая характерная особенность позволяет увеличить силу посылаемого серым веществом импульса в несколько раз. Кроме этого она выполняет изолирующую функцию, позволяющую сохранить силу сигнала на протяжении всего аксона.

Что касается химического состава белого вещества, то миелин в основном образован липидами (органическими соединениями, включающими жиры и жироподобные вещества) и белками, поэтому белое вещество, на первый взгляд, представляет собой жироподобную массу с соответствующими характеристиками.

Распределение белого вещества в различных участках ЦНС неоднородно по химическому составу: спинной мозг «жирнее» головного отдела нервной системы. Это обусловлено тем, что от серого вещества этого отдела, выходит большее количество эфферентной информации к периферической нервной системе.

Как распределяется серое и белое вещество в полушариях большого мозга

Для наглядного изучения строения ЦНС существует несколько методик позволяющих увидеть головной мозг в разрезе. Наиболее информативным считается сагиттальный разрез, с помощью которого мозговые ткани делятся на 2 равноценные части вдоль центральной линии. При этом для изучения расположения серого и белого вещества в толще идеально подходит фронтальный разрез переднего отдела, и соответственно больших полушарий, позволяющий выделить гипоталамус, мозолистое тело и свод.

Белое вещество переднего отдела располагается в толще больших долей, которые являются плацдармом для серого вещества, из которого состоит кора. Она покрывает всю поверхность полушарий своеобразным плащом и относится к структурам высшей нервной деятельности человека.

При этом толщина серого вещества коры неодинакова на всем протяжении и варьируется в пределах 1,5—4,5 мм, достигая наибольшего развития в центральной извилине. Несмотря на это она занимает около 44% от объема переднего мозга, так как располагается в виде извилин и борозд, позволяющих увеличить общую площадь этой структуры.

В основании белого вещества больших полушарий, также располагаются отдельные скопления серого вещества, из которых состоят базальные ядра. Эти образования являются подкорковыми структурами или центральными узлами основания конечного отдела. Специалисты выделяют 4 вида подобных функциональных центров, которые различаются по форме и своему предназначению:

  1. хвостатое ядро;
  2. чечевицеобразное ядро;
  3. ограда;
  4. миндалевидное тело.

Все эти структуры между собой отделены прослойками белого вещества, которое передает информацию от них в нижележащие отделы головного мозга посредством черного вещества, расположенного в среднем отделе, а также связывает ядра с корой и обеспечивает их слаженную работу.

Чем опасно поражение белого и серого вещества

В результате любых патологических процессов, происходящих в структурах белого и серого вещества, ярко выраженная симптоматика заболевания может проявляться по-разному и зависит от места локализации разрушенного участка и обширности очаговых повреждений головного мозга.

Особо опасные заболевания характеризуются наличием нескольких или множественных труднодоступных очагов поражения, которые отягчены смазанной симптоматикой, состоящей из большего количества признаков патологических изменений.

Заболевания ЦНС, сопровождающиеся изменениями в строении белого вещества:

  • Лейкоатероз. Относится к много очаговым изменениям в структуре головного мозга. В результате этого недуга происходит постепенное снижение плотности белого вещества, располагающегося в полушариях мозжечке и стволе этого органа. Приводит к дегенеративным изменениям в поведении человека и не является самостоятельным заболеванием, так как чаще всего развивается на фоне недостаточного снабжения питательными веществами нервной ткани.
  • Самой распространённой причиной такого недуга, как рассеянный склероз, является демиелинезация белого вещества или разрушение миелиновой оболочки нервных волокон. Также как при первом заболевании процесс носит много очаговый характер и затрагивает все структуры ЦНС, из-за чего имеет обширную клиническую картину, в которой могут сочетаться множество признаков и симптомов болезни. Обычно пациенты с рассеянным склерозом легко возбудимы, имеют проблемы с памятью и мелкой моторикой. В особо тяжелых случаях развивается паралич и другие нарушения двигательной функции.
  • Такое патологическое состояние, как гетеротопия серого вещества головного мозга, характеризуется нетипичным расположением нейронов серого компонента в структурах этого отдела ЦНС. Встречается у детей с эпилепсией и другими психическими патологиями, например, умственной отсталостью. Является результатом генетической и хромосомной аномалии в развитии человека.

Достижения в современной медицине позволяют диагностировать патологические изменения в мозговом веществе еще на начальной стадии развития, что крайне важно для проведения последующих терапевтических действий, так как известно, что любые прогрессирующие перемены в структуре и белого и серого вещества мозга в итоге ведут к дегенеративным изменениям и другим тяжелым неврологическим проблемам.

Диагностика заболевания включает в себя очный осмотр пациента специалистом-неврологом, во время которого с помощью специальных тестов выявляются практически все патологические изменения в сером и белом веществе, без применения специальной аппаратуры.

Наиболее информативной методикой изучения и белого и серого вещества является МРТ и КТ, позволяющие получить некоторое количество снимков внутреннего состояния структур головного мозга. При помощи этих методов исследования появилась возможность детально изучить общую анатомическую картину как единичных, так и множественных очагов изменений этих функциональных единиц НС.

Видео

Серое и белое вещество головного мозга и его функции

Строение человеческого организма сложное и уникальное, особенно это актуально для серого и белого вещества головного мозга. Однако, именно благодаря подобным особенностям люди смогли достичь существующих преимуществ над остальными представителями животного мира. Изучение строения внутричерепных структур, их функций и особенностей еще не закончено. Однако, знание о расположении и значении для здоровья людей о них помогает специалистам понимать природу заболеваний нервной системы, подбирать оптимальные схемы лечения.

Строение

Каждая клетка головного мозга имеет тело и несколько отростков – длинное волокно у аксона и короткое у дендритов. Именно они своим цветом определяют окраску разных отделов органа. Так, серое вещество в своей структуре содержит нейроны, глиальные элементы и сосуды. Его ответвления не покрыты оболочкой – от этого и темный оттенок.

Больше всего подобного вещества присутствует в следующих отделах:

  • кора передних полушарий;
  • таламус и гипоталамус;
  • мозжечок и его ядра;
  • базальные ганглии;
  • черепно-мозговые нервы и ствол;
  • столбы с отходящими от них спинномозговыми рогами.

Все пространство по периферии серых структур занимает белое вещество. В нем расположено огромное количество отростков нервных волокон, поверх которых размещена миелиновая оболочка. Она и придает белый оттенок тканям. Именно эти структуры в центральной нервной системе образуют проводниковые пути, по которым информационные сигналы перемещаются к зависимым органам, либо от них обратно к центральным структурам.

Основные типы белых волокон:

  • ассоциативные – локализованы на разных участках спинномозговых нервов;
  • восходящие – передают информацию от внутренних структур к коре полушарий;
  • нисходящие – сигнал поступает от внутричерепных образований к спинномозговым рогам, а оттуда к внутренним органам.

Рассмотреть, как устроена нервная система, что такое белое вещество либо серое вещество, удобнее на обучающих макетах – подробные срезы с цветным изображением наглядно будут демонстрировать особенности расположения тканей и структурных единиц.

Немного о сером веществе

Серым клеткам в отличие от проводниковой функции белого вещества мозга присущи различные варианты задач:

  • физиологические – образование и перемещение, а также получение и последующая обработка электрических импульсов;
  • нейрофизиологические – речь и зрение, мышление и память с эмоциональными реакциями;
  • психологические – формирование сути личности человека, его мировоззрения и мотивации с волей.

Многочисленные исследования специалистов позволили установить, чем образованы серое вещество и белые участки мозга, их роль в центральной нервной системе. Однако, и в наши дни остаются нерешенными многие загадки.

Тем не менее, были анатомически структурированы ядра серого вещества в топике внутричерепных полушарий и таковые структуры в спинном мозге. По сути – они главный координационный центр, через который формируются человеческие рефлексы и высшая интеллектуальная деятельность. К примеру, если знать, где находятся серое вещество коры и его зависимый орган, можно вызвать необходимую реакцию на раздражитель. Этим пользуются врачи для восстановления больных после некоторых неврологических заболеваний.

Безусловно, то, из чего состоят белое вещество и подкорковые ядра переднего отдела мозга будут напрямую обусловливать скорость передачи импульсов и их обработки. Этим люди и отличаются друг от друга. Поэтому все субкортикальные очаги в белом веществе должны рассматриваться отдельно.

Топография

Волокна серых и белых нейроцитов представлены, как в центральной, так и в периферической части нервной регуляции. Однако, если в спинном мозге серое вещество топографически локализовано в середине – напоминает очертаниями бабочку, которая окружает спинномозговой канал, то в черепном отделе оно, наоборот, покрывает главные полушария. Отдельные его участки – ядра, размещены и в глубине.

Белое же вещество локализовано вокруг «бабочки» в спинномозговой части мозга – нервные волокна, окруженные оболочками, а в центральном отделе – под корой, представляя отдельные белые скопления и тяжи.

Высокодифференцированные клетки серого вещества образуют кору головного мозга – плащ. Именно они представляют собой интеллект человека. Увеличение площади коры возможно благодаря множеству складок – борозд и извилин. Толщина плаща неоднозначна – больше в районе центральной извилины. Постепенное ее уменьшение можно наблюдать по направлению к спинному мозгу, переход в который обозначен как продолговатый мозг.

Процентное соотношение белого и серого вещества в разных отделах мозга неоднозначно. Как правило, безоболочечных белых скоплений больше. Принято выделять структурные отделы:

  • передний – большие полушария, которые покрыты корой из серого вещества, внутри ядра с окружением из белого вещества;
  • средний – множество черепно-мозговых ядер из темных клеток с проводящими путями из белого мозгового волокна;
  • промежуточный – представлен таламусом, а также гипоталамусов, к которым перемещаются импульсы по множеству белых волокон к размещенным в них ядрам вегетативной системы;
  • мозжечок – напоминает большие полушария в миниатюре по строению, поскольку можно выделить кору и подкорку, но не по функциональным обязанностям;
  • продолговатый – преобладает серое вещество, которое представлено множеством ядер и мозговых центров.

Изучению представительства той или иной части тела в мозге посвящено множество научных работ. Однако, исследование их незаконченно – природа преподносит людям все новые открытия.

Функции

Благодаря сложному и уникальному строению нервной системы, вещество мозга в состоянии выполнять множество функциональных обязанностей. По сути, на него возложено управление всем многообразием происходящих внутри организма процессов.

Так, функциями белого вещества, бесспорно, являются принять и донести информацию с помощью нервных импульсов – как между отдельными участками головного либо спинного мозга, так и ними, как отдельными структурными звеньями сложной системы. Для того чтобы представить схему функциональных обязанностей белого вещества, необходимо выделить основные волокна:

  • ассоциативные – отвечают за взаимосвязь разных зон коры одного из полушарий, к примеру, короткие белые ответвления несут ответственность за связь между близлежащими извилинами, тогда как длинные – за взаимодействие отдаленных областей коры;
  • комиссуральные – белые волокна соединяют не только симметричные зоны, но и кору в отдаленных долях полушариях, что находит отражение в мозолистом теле и спайках, которые расположены непосредственно между крупными полушарными единицами;
  • проекционные белые волокна – несут ответственность за качество связи коры большого мозга с нижерасположенными структурными звеньями, а также периферией, к примеру, доставку информации от двигательных нейронов и обратно к ним, либо от чувствительных клеток.

Анатомическое строение и расположение обусловливает и функции серого вещества. Оно одновременно в состоянии создавать и обрабатывать нервные импульсы. За счет них происходит управление всеми внутренними жизненно важными процессами – автоматически в дыхательной, сердечнососудистой, пищеварительной и мочевыделительной системах. Это так называемое сохранение постоянства внутренней среды, чтобы человек как биологическая единица смог сохранить себя единым целым. Тогда как отличительной функцией серого вещества можно назвать развитие и преумножение интеллекта. Кора головного мозга имеется у каждого живого человека. Тем не менее, уровень развития умственных способностей у всех различен. Принятием, обработкой и сохранением информации занимаются именно серые клетки коры больших полушарий мозга.

Отличительные черты

Для четкого понимания того, каковы важные отличия серого и белого веществ мозга, что они собой представляют и их функциональные особенности, специалистами были разработаны критерии. Основные представлены в таблице:

Критерии Серое вещество Белое вещество
строение ядра нервных клеток и короткие отростки длинные миелинизированные аксоны
локализация преимущественно в центральной нервной системе преимущественно на периферии
потребление кислорода 3–5 мл/мин менее 1 мл/мин
функция регулирующая, рефлекторная проводящая
удельный вес 40% от всего веса более 60% веса

В целом, понятия исключительно серого или белого в общей картине головного или же спинного мозга как такового не существует – настолько тесно переплетены анатомически и функционально эти структуры органа. Без одного не может существовать другого.

Условно нервную клетку можно представить гостиницей, в которой люди остановились отдохнуть и обменяться новостями. Это серая субстанция мозга. Однако, после этого они уезжают дальше – посетить другие интересные места. Для этого им необходимы качественные скоростные дороги – проводящие волокна белого вещества.

И если без темных ядер подкорковых структур и плаща больших полушарий люди вовсе не в состоянии выполнять высшие нервные действия – память, мышление, обучение, то без полноценной белой материи не представляется возможным быстро принимать решения или реагировать на происходящие изменения в окружающем мире.

Возможные заболевания

Любые нарушения анатомической целостности нервной клетки не проходят бесследно. Однако, на тяжесть патологического расстройства и его продолжительность напрямую влияет характер провоцирующего фактора. Так, при ухудшении мозгового кровотока из-за атеросклеротической бляшки, которое приводит к постгипоксическим изменениям головного мозга – ишемического инсульта характерно:

  • локальное ощущение онемения;
  • частичная/полная утрата движения в какой-либо части тела;
  • мышечная слабость.

Если же травмы приводят к гибели большого участка коры, человек вовсе утрачивает одну из своих высших нервных функций, становится инвалидом. В случае опухолевого поражения подкорковых структур могут возникать расстройства в регулировании зависимых от них структур – вегетативные отклонения, терморегуляция, эндокринные расстройства.

Безусловно, заболевания корковых структур заметны сразу же. Между тем, атрофия белых волокон может протекать скрыто, к примеру, при дисциркуляторном энцефалопатии. Вначале страдают мелкие участки мозга, что отражается на повседневной деятельности человека. Позже процесс охватывает все сферы мозговой деятельности – к примеру, болезнь Альцгеймера, рассеянный склероз. При проведении магнитно-резонансной томографии могут быть выявлены единичные очаги в белом веществе лобных долей – лейкоареоз, или же их локализация в мозжечке. Тогда помимо интеллектуальных расстройств больному свойственны двигательные сбои. Подбором оптимальных схем лечения должен заниматься невропатолог с учетом анатомических и функциональных особенностей серого/белого вещества головного мозга.

анатомия, функции, влияние на формирование личности


Трудно недооценивать функции и роль мозга человека. Человеку свойственны: связная речь, способность фантазировать, возможность анализировать, запоминать факты, различать мелодии, передавать опыт поколениям и многое другое. Организм человека – сложная, идеально налаженная структура, которая обеспечивает физическую активность, жизнедеятельность, основные психические функции: мышление, восприятие, память, речь, и т.д.

Очевидная связь между мозгом и рефлекторно сенсорной деятельностью – стимулирует ученых продолжать изучение мозга и его функций, где одним из актуальных вопросов остается – роль серого вещества в жизнедеятельности человека и в формировании человеческого интеллекта.

Общие сведения о сером веществе

Центральная нервная система (ЦНС) человека одна из сложнейших структур организма, ona несет крайне ответственную роль – обеспечивает функциональную целостность организма и его взаимосвязь с окружающим миром. ЦНС состоит из головного и спинного мозга и их защитных оболочек, которые, в свою очередь, состоят из серого и белого вещества.

Серая субстанция (лат. substantia grisea) отвечает за большинство функций высшей нервной деятельности человека. Благодаря ей человек воспринимает внешнюю среду, слышит, видит, говорит и самое главное, человек может выражать отношение, проявлять симпатию или отрицательные эмоции, проявлять виды человеческого поведения, эмпатию и т.д.

Субстанция состоит примерно из 86 млрд. нейронов, конечно, это число крайне приблизительно, так как современная медицина еще не имеет возможности провести подсчёт точного количества нервных клеток.

Белая субстанция или белое вещество (лат. substantia alba) служит в основном для передачи сигналов и обеспечивает взаимосвязь обоих полушарий, а также переносит информацию от коры головного мозга к нервной системе.

Скопления нейронов образуют ядра серого вещества. Каждое ядро несет соответствующую ответственность и функцию: зрительные, слуховые функции, кровообращение, дыхание, движение, мочеиспускание и т.д.

Кора головного мозга состоит из ядер серого вещества, которые формируют соответствующие центры. Substantia grisea одна из основных составляющих спинного мозга, а ее ядра расположены в коре мозжечка и во внутренних структурах большого мозга (продолговатый мозг, таламус, гипоталамус и т.д.).

Серое вещество предстает в виде оболочки головного мозга, под которым находится белое, однако, в спинном мозге substantia grisea находится во внутренней части спинномозговой системы, обволакивая наполненный ликвором узкий центральный канал, вещество образует контур буквы Н, а покрыто оно уже белым веществом.

Строение серого вещества

Substantia grisea идеально устроенная структура, в состав которой входят:

  • нейроны;
  • дендриты;
  • безмиелиновые аксоны;
  • глиальные клетки;
  • тонкие капилляры.

Последние окрашивают кору в коричневый цвет и вопреки бытующему мнению субстанция имеет не серый, а серо-коричневый цвет. Многочисленные лабиринтоподобные впадины и выпуклости – образуют извилины – известные как мозговые извилины. Основная функция серого вещества – обеспечение связи человеческого организма с внешним миром, а также регулирование рефлексов и обеспечение высших психических функций.

И если substantia grisea – состоит из нейронов, то substantia alba предстает в виде покрытых миелином аксонов (отростки нейронов), которые выполняют функцию проводников и служат для того, чтобы передавать сигналы, и обеспечивать связь между полушариями и нервными центрами. Миелиновая оболочка придает характерный белый цвет веществу.

Серая субстанция в спинномозговой структуре напоминает по строению контуры букву Н или крылья бабочки. В зависимости от расположения и функций серые столбы делятся на: задние, передние и боковые. Из боковых частей спинного отдела, в свою очередь, подразделяются на:

  • Задние – состоят из промежуточных нервных клеток. Принимают сигналы от ганглиев.
  • Передние – состоят из двигательных нейронов. Основная функция – обеспечение мышечного тонуса.
  • Боковые – состоят из чувствительных и висцеральных нейронов. Отвечают за двигательные функции.

Функции серого вещества

Работа ЦНС обеспечивает в организме большое количество связей, которые выполняют две основные функции: контроль мышечной активности (двигательный рефлекс) и  обеспечение сенсорного восприятия (чувственные рефлексы) и высших психических функций: память, речь, эмоции.

Функции substantia grisea обусловлены местом его расположения, например:

  1. В коре головного мозга субстанция отвечает за связь организма с внешним миром, а также несет информацию и регулирует деятельность внутренних органов, отвечает за обеспечение высшей нервной деятельности, благодаря чему человек способен мыслить, запоминать, воспринимать и т.д.
  2. В продолговатом мозге ядра субстанции регулируют двигательные процессы, равновесие, обеспечивают координацию движений, а также регулируют обмен веществ, дыхательные процессы и кровоснабжение.
  3. В коре мозжечка серые ядра отвечают за координацию движений и ориентацию в пространстве.
  4. В промежуточном мозге ядра отвечают за контроль деятельности внутренних органов, регулируют рефлексы и температуру тела.
  5. В конечном мозге ядра обеспечивают двигательный, рефлекторный контроль и регулировку высших психических функций: связная речь, зрение, обоняние, вкусовые ощущения, слух, осязание.

Спинной мозг – сложная структура, которое несет следующие функции: рефлекторная, двигательная, сенсорная и проводниковая. Первые три функции возложены на серое, а третья – белое вещество.

  1. Рефлекторная функция – регулирование безусловных рефлексов: сосательный рефлекс, коленный рефлекс, мгновенная реакция на болевые раздражители и т.д.
  2. Двигательная функция – контролирование мышечных рефлексов, связанных с двигательной системой. Соответствующие клетки спинного мозга отправляют сигналы конкретной группе мышц, побуждая к тому или иному действию, благодаря чему мы можем целенаправленно поворачивать голову, двигать шеей, поднимать и опускать руки, ходить.
  3. Сенсорная функция –  передача импульса, идущего от афферентных волокон туловища, к отделам головного мозга, откуда идет команда, содержащая реакцию на раздражитель.
  4. Проводниковая функция – обеспечение прохождения импульса к  головному мозгу, а оттуда  – прохождение команды действия, идущей к соответствующему органу. Регулируется белой субстанцией.

Серая субстанция обеспечивает нормальную жизнедеятельность человека, его взаимодействие с внешним миром, виды человеческой деятельности, является основой когнитивного и сенсорного восприятия, а также основой двигательной, рефлекторной, регуляторной и  всех психических функций.

Как серое вещество влияет на некоторые способности людей

Серая ткань мозга, регулируя переработку сигналов извне и генерируя эффекторные импульсы не только отвечает за работу всей нервной системы человека, но и влияет на его способности: умственные, познавательные, физические и т.д.

Различные эксперименты ученых показали, что способности человека зависят от объёма серой субстанции, в то время как изменение количества белой ощутимых изменений не показало.

Эксперименты британских ученых показали, что чем тоньше кора больших полушарий, следовательно, чем меньше объём серой субстанции, тем хуже человек справляется с решением логических задач, тем меньше у него различных способностей, а также при низком объёме субстанции у испытуемых часто наблюдались проблемы с быстротой реакции, речевые дисфункции, проблемы с запоминанием и слабые интеллектуальные способности.

В то же время исследования показали, что изучение иностранных языков, запоминание стихов, научных или художественных произведений и занятия музыкой сказываются на увеличении коры головного мозга. Чем длительней и интенсивней процесс изучения, тем больше становится объем серой субстанции, следовательно, тем больше способностей, в том числе и умственных, проявляет человек.

На уменьшение количества серого вещества влияют:

  • образ жизни человека – малоподвижный, инертный, неактивный, с физической и мыслительной точки зрения, образ жизни;
  • злоупотребление вредными привычками – алкоголь, наркомания и курение сокращают объём серой субстанции.

Например: у страдающих алкоголизмом наблюдается значительное уменьшение количества мозговой ткани, что отражается на поведении и психических функций: бессвязная речь, проблемы с памятью и восприятием, заторможенность мыслительных процессов.

Серое вещество и интеллект

В настоящее время ученый мир разделился на два фронта:

  1. Первые утверждают, что масса и объём мозга влияют на умственные способности человека.
  2. Вторые уверены, что объём серого вещества играет второстепенную роль.

В разные времена, ученые разных стран пытались определить связь substantia grisea и интеллекта, однако, необходимо учесть тот факт, что изучение мозга, из-за строения и расположения органа, является довольно затруднительным процессом, и многое о функциях мозга пока что остается неизученным и неизвестным человеку.

С уверенностью можно сказать, что слабая связь между умственными, аналитическими способностями и размером мозга была обнаружена учеными пару десятков лет назад, однако, другие ученые в ходе экспериментов доказали, что уровень интеллекта зависит не от веса или размера мозга в целом, а от размера передней доли мозга.

Современные ученые предполагают, что IQ человека – сложное и многогранное понятие, и в процессе становления человеческого интеллекта задействованы различные структуры, где важную роль играет скорость передачи нервного импульса или число связей между нервными клетками.

Другая группа ученых обнаружила, что у людей с высоким интеллектом объём серого вещества больше. Однако, это привело лишь к очередной гипотезе, что некоторый процент объёма substantia grisea связан с интеллектуальными способностями человека.

Гипотез, связанных с вопросом – много, но на сегодняшний день экспериментально доказанного, однозначного ответа ученый мир еще не дал.

Одно можно сказать точно – дополнительный объем серого вещества позволяет более продуктивно и быстро обрабатывать информацию, повреждение и поражение серого вещества, в зависимости от локализации, приводит к мышечным, чувствительным и неврологическим расстройствам.

Околоводопроводное серое вещество — Википедия

Околоводопроводное серое вещество (также известное как периакведуктальное серое вещество или центральное серое вещество среднего мозга) — это скопление серого вещества под водопроводом мозга, анатомически относящееся к покрышке среднего мозга. Околоводопроводное серое вещество направляет свои восходящие проекции в ядра шва и в голубое пятно, а также в соматосенсорные и висцеросенсорные ядра таламуса. Оно также имеет нисходящие проекции в спинной мозг. Восходящие нервные волокна спиноталамического пути, проводящие ощущения боли и температуры, на своём пути в таламус делают промежуточную «остановку» в околоводопроводном сером веществе. Эта часть спиноталамического пути называется спиномезэнцефалическим путём. В свою очередь, воспринимающие болевые и температурные ощущения ядра таламуса направляют свои нисходящие волокна обратной связи к спинному мозгу также через околоводопроводное серое вещество.

Роль в регуляции болевой чувствительности[править | править код]

Околоводопроводное серое вещество (ОСВ) является одним из основных центров нисходящей регуляции болевой чувствительности, то есть одним из основных центров антиноцицептивной системы. Оно содержит нейроны, производящие энкефалины и уменьшающие восприятие восходящих болевых импульсов из спинного мозга. В эту область нередко вживляют электроды имплантатов устройств ГСМ (глубокой стимуляции мозга) при лечении пациентов с различными хроническими болевыми синдромами.

Этот механизм работает следующим образом: стимуляция околоводопроводного серого вещества активирует его энкефалин-содержащие нейроны, которые затем посылают свой энкефалиновый сигнал к ядрам шва в стволе мозга и к голубоватому пятну. Нервные окончания ядер шва выделяют серотонин, а нервные окончания ядер голубоватого пятна выделяют норадреналин. Нисходящие нервные волокна как от ядер шва, так и от ядер голубоватого пятна идут в желатинозное вещество задних рогов спинного мозга. Там они формируют, соответственно, возбуждающие серотонинергические и возбуждающие норадренергические синапсы с угнетающими (ингибиторными) энкефалинергическими, динорфинергическими или ГАМКергическими вставочными нейронами (интернейронами).

Будучи активированы нисходящим серотонинергическим или норадренергическим сигналом от ядер шва или ядер голубоватого пятна, эти вставочные нейроны выделяют, соответственно, энкефалины, динорфин или ГАМК. Выделяясь на синаптических окончаниях на аксонах входящих в спинной мозг A-delta или C волокон, передающих болевые и температурные ощущения от ноцицепторов с периферии в мозг, эти вещества связываются, соответственно, с угнетающими опиоидными рецепторами подтипов мю, каппа и/или дельта, или с ГАМК-рецепторами. Активация этих рецепторов, в свою очередь, приводит к угнетению активности соответствующего аксона и к уменьшению выделения им субстанции P.

Уменьшение активности этих входящих аксонов от нейронов первого порядка, уменьшение выделения субстанции P в их синаптических терминалях, под влиянием ингибирующих энкефалиновых, динорфиновых или ГАМКергических сигналов, в свою очередь, приводит к угнетению активности нейронов второго порядка, ответственных за передачу болевых и температурных сигналов вверх, по спиноталамическому пути, в вентральное постеролатеральное ядро таламуса.

Таким образом, под влиянием этого механизма передача болевого сигнала прерывается или существенно снижается ещё на этапе вхождения сигнала в задние рога спинного мозга, задолго до достижения этим сигналом фильтров таламуса, и тем более до достижения им тех областей коры больших полушарий, которые осознают этот сигнал и интерпретируют его как боль — таких областей, как передняя поясная кора. Эту теорию называют «теорией воротного контроля боли». Она подтверждается, в частности, тем, что электрическая стимуляция околоводопроводного серого вещества приводит к развитию немедленного и сильного обезболивающего эффекта (анальгезии)[2].

Околоводопроводное серое вещество также активируется при просмотре статических изображений и видео, ассоциирующихся с ощущением боли (например, фотографий и видео драк, бытовых травм или хирургических операций), при восприятии соответствующих, ассоциирующихся с болью, звуков, таких, как крики, стоны, плач, и при восприятии запаха крови или гноя. Во всех этих случаях у смотрящего, слышащего или ощущающего соответствующие образы, звуки или запахи, также заранее возникает анальгезия, хотя ему самому никто в этот момент боли ещё не причиняет[3]. Описанная система называется антиноцицептивной системой мозга[3].

Обезболивающее (анальгетическое) действие поступающих извне в системный кровоток (экзогенных) опиатов и опиоидов, таких, как морфин, героин, кодеин, фентанил, также реализуется по большей части через взаимодействие с опиоидными рецепторами околоводопроводного серого вещества, а также с опиоидными рецепторами вентрального постеролатерального ядра таламуса (центральное, или супраспинальное, анальгетическое действие), и лишь отчасти — через взаимодействие с опиоидными рецепторами желатинозной субстанции в задних рогах спинного мозга (спинальное анальгетическое действие). Однако при введении опиатов и опиоидов эпидурально или субдурально в полость спинномозгового канала их действие, напротив, реализуется преимущественно на спинальном уровне. При этом требуются намного (на десятичный порядок) меньшие их дозы, чем при введении в системный кровоток. Опиоидных рецепторов известно три подтипа: мю, каппа и дельта. Особенности взаимодействия конкретного опиоидного лекарства с разными подтипами опиоидных рецепторов определяют спектр и выраженность его побочных эффектов, таких, как выраженность эйфории и угнетения дыхания.

Анальгетическое действие антидепрессантов реализуется одним-двумя уровнями иерархии антиноцицептивной системы ниже: не в таламусе и не в околоводопроводном сером веществе, а в иннервируемых ОСВ ядрах шва и в ядрах голубоватого пятна. Под влиянием антидепрессантов в этих образованиях повышается концентрация серотонина и норадреналина. Возникающая при этом стимуляция нисходящих серотонинергических и норадренергических волокон, идущих от этих ядер в желатинозную субстанцию спинного мозга, приводит к активации тормозящих вставочных опиоидергических и ГАМКергических нейронов желатинозной субстанции, и к прерыванию или ослаблению болевого сигнала от первичных соматосенсорных и висцеросенсорных нейронов ко вторичным. Анальгетическое действие ГАМКергических препаратов, таких, как баклофен, реализуется ещё одним уровнем иерархии ниже — непосредственно на уровне ГАМКергических вставочных нейронов спинного мозга.

Роль в организации различных видов защитного поведения[править | править код]

Стимуляция дорсального и/или латеральных участков ОСВ вызывает у экспериментальных животных разных видов защитные реакции, варьирующиеся в диапазоне от замирания, прислушивания и принюхивания в напряжённой готовности к немедленному осуществлению реакции «бей или беги», до собственно убегания, прыжков или проявлений защитной агрессии вроде оскаливания зубов, выпускания когтей, взъерошивания шерсти. Все эти реакции сопровождаются также увеличением частоты дыхания и его глубины с развитием временного физиологического тахипноэ, повышением частоты сердечных сокращений с развитием временной физиологической тахикардии, повышением артериального давления с развитием временной физиологической артериальной гипертензии, повышением скорости метаболизма и температуры тела до субфебрильных цифр, повышением содержания глюкозы в крови с развитием временной физиологической гипергликемии, повышением мышечного тонуса. Эти физиологические сдвиги наступают раньше, чем животное побежит, прыгнет или само нападёт на потенциального агрессора, и необходимы для подготовки организма к эффективному осуществлению реакции «бей или беги» (усиленная прокачка крови к мышцам, улучшение их снабжения глюкозой и кислородом, и т. д.). Одновременно у экспериментального животного развивается сильная анальгезия, по-видимому, служащая для превентивной защиты от возможных последствий нападения хищника или от травм, полученных в процессе поспешного бегства.

Напротив, стимуляция каудального вентролатерального участка ОСВ вызывает у экспериментальных животных реакцию, известную как «притвориться мёртвым» — паралич взора при открытых глазах или закрывание глазных век, расширение зрачков, замирание в неподвижности, но, в противоположность первому типу реакции, с глубоким расслаблением мышц и принятием восковой гибкости (животное пассивно принимает любую придаваемую ему исследователем или хищником позу, но затем конечности якобы «мёртвого» животного или сами собой падают под действием силы тяжести, или же «застывают», имитируя трупное окоченение), максимально возможным замедлением метаболизма, снижением температуры тела до степени небольшой гипотермии, урежением дыхания и уменьшением его глубины с развитием брадипноэ, замедлением сердечных сокращений до степени небольшой брадикардии, снижением артериального давления с развитием некоторой гипотензии. Вся эта совокупность реакций направлена на то, чтобы потенциальный хищник (большинство из которых падаль не ест, предпочитая свежеубитую им самим жертву) с как можно меньшей вероятностью смог отличить притворившееся мёртвым животное от действительно мёртвого. Эта реакция тоже сопровождается развитием выраженной анальгезии, даже более сильной, чем в первом случае (что опять-таки повышает вероятность выживания и успешность «притворения мёртвым» в такой ситуации, в силу того, что хорошо анальгезированное животное с меньшей вероятностью подаст голос или шевельнётся, или задышит чаще, когда хищник станет его терзать, проверяя, действительно ли оно мертво).

Угнетение же активности каудального вентролатерального участка ОСВ, напротив, приводит к повышению у экспериментальных животных интереса к окружающему миру и исследовательской локомоторной (двигательной) активности.

Поражения или повреждения каудальной вентролатеральной части ОСВ приводят к значительному ослаблению или полному исчезновению условнорефлекторных замираний в ответ на условно неприятные стимулы (например, звук, за которым должен последовать удар током). Поражения или повреждения дорсальной или латеральных частей ОСВ значительно уменьшают агрессивность животных и их склонность проявлять врождённые неспецифические защитные реакции, такие, как оскаливание зубов, выпускание когтей, взъерошивание шерсти, а также их склонность убегать или прятаться.

Роль в регуляции копулятивного поведения[править | править код]

Нейроны околоводопроводного серого вещества получают входящую информацию от вентромедиального ядра гипоталамуса и играют роль в осуществлении копулятивного поведения, прежде всего у самок. Они обеспечивают принятие самкой позы покорности и подчинения, уменьшение её агрессивности, развитие лордоза («отклячивания зада», «приседания») у самки перед половым сношением, а также некоторую степень анальгезии для обоих партнёров в процессе сношения и некоторое время после него.

Роль в регуляции родительского и дружественного поведения[править | править код]

Околоводопроводное серое вещество вовлечено в регуляцию родительского (прежде всего материнского), семейного и дружественного поведения. В зоне ОСВ имеется очень высокая плотность рецепторов к пролактину, окситоцину и вазопрессину, а также клетки, секретирующие их. Эти важные нейропептиды принимают участие в регуляции родительского (особенно материнского), семейного и дружественного поведения, в формировании связей «родитель-ребёнок», партнёрских уз и дружеских связей, а также в формировании социальных связей более общего характера, и в регуляции уровня агрессивности по отношению к представителям своего вида. Кроме того, область ОСВ, богатая этими рецепторами, имеет тесные связи с орбитофронтальной корой. Влияние ОСВ на активность орбитофронтальной коры, собственно, и опосредует роль ОСВ в регуляции родительского, партнёрского и дружественного поведения. Латеральная орбитофронтальная кора активируется приятными зрительными, тактильными и обонятельными стимулами. При этом её активность зависит не от интенсивности стимула, а от восприятия того или иного стимула как приятного. Выделением окситоцина (в некоторых случаях, таких, как материнство или сексуальная активность, также выделением пролактина) в ОСВ, с последующим усилением активности латеральной орбитофронтальной коры в ответ на такие субъективно приятные стимулы, как внешний вид и запах тела или волос партнёра, внешний вид и запах тела ребёнка, тактильные ощущения от прикосновения к коже партнёра или ребёнка, или тактильные ощущения от дружеских объятий и рукопожатий (человеческого аналога взаимного «почёсывания шёрстки» у приматов) опосредуется быстрое возникновение родительской привязанности, привязанности к партнёру или другу[4].

Серое и белое вещество головного мозга

Серое и белое вещество головного мозга

Реферат cтудента 15 группы первого курса факультета психологии Белорусца Арсения Сергеевича.

Московский государственный университет

Москва 2002 г.

Белое вещество продолговатого мозга (substantia alba myelencephali).

Продолговатый мозг (myelencephalon) представляет собой продолжение спинного мозга в виде его утолщения. На его передней поверхности можно различить два конусообразных валика, пирамиды (pyramis). Каждая пирамида представляет собой комплекс пучков, которые, частично перекрещиваясь, переходят в боковой канатик (funiculus lateralis) спинного мозга. Остальная (меньшая) часть пучков продолжается в переднем канатике (funiculus anterior).

Задняя серединная (sulcus medianus posterior) и заднебоковая (sulcus posterolateralis) борозды ограничивают задний канатик (funiculus posterior), являющийся продолжением одноименного канатика спинного мозга. Промежуточная борозда (sulcus intermedius posterior) делит канатик на два пучка: тонкий (fasciculus gracilis) и клиновидный (fasciculus cuneatus). По тонкому пучку в головной мозг идут импульсы от нижних конечностей, по клиновидному – от верхних. У верхнего конца заднелатеральной борозды как продолжение заднего и бокового канатиков, располагается нижняя ножка мозжечка (pedunculus cerebellaris inferior). В ее состав входят волокна проводящих систем, которые образуют латеральную и медиальную части.

Серое вещество продолговатого мозга (substantia grisea myelencephali).

На поперечном срезе, проведенном через оливы (oliva) (см. рис. 1), в последних различают скопления серого вещества. Наибольшее из них, нижнее оливное (nucleus olivaris inferior) или зубчатое ядро (nucleus dentatus), имеет складчатую форму. Также в оливах можно различить ядра меньшего размера: медиальное добавочное ядро оливы (nucleus olivaris accessorius medialis) и дорсальное добавочное ядро оливы (nucleus olivaris accessorius dorsalis). На дорсальную область среза проецируются ядра VII-XII пар черепных (черепно-мозговых) нервов. В медальной части среза видна ретикулярная формация (formatio reticularis) – сетчатое образование, состоящие из множества островков серого вещества, отделенных друг от друга белыми волокнами.

В клиновидном и тонком бугорках (tuberculum cuneatum et tuberculum gracilis) залегают скопления серого вещества: соответственно, тонкое (nucleus gracilis) и клиновидное ядро(nucleus cuneatus). Оба этих ядра – переключательные.

Рис.1 Поперечный срез спинного мозга.

1. Nucleus hypoglossus

2. Nucleus dorsalis vagi

9. Oliva

11. Nucleus tractus spinalis nervi trigemini

Серое вещество заднего мозга (substantia grisea metencephali).

Мост (pons)

Большинство скоплений серого вещества залегает в дорсальной части моста. Это собственные ядра моста (nuclei pontis) и ядра трапециевидного тела (nuclei corporis trapezoidei).

Мозжечок (cerebellum)

Серое вещество, располагаясь в поверхностном слое, образует кору мозжечка (cortex cerebelli). В коре мозжечка различают два слоя клеток: молекулярный (strautum moleculare) и зернистый (strautum granulosum).

Скопление серого вещества в глубине мозжечка образует его ядра (nuclei cerebelli). Различают следующие:

Зубчатое ядро (nucleus dentatus) залегает в медиально-нижних участках белого вещества

Пробковидное ядро (nucleus embolifirmis) располагается медиально и параллельно зубчатому ядру.

Шаровидное ядро (nucleus globosus) залегает несколько медиальнее пробковидного.

Ядро шатра (nucleus fastigii) располагается в белом веществе червя, по обеим сторонам его серединной плоскости, под долькой язычка (lingula) и центральной долькой (lobulus centralis), в крыше четвертого желудочка.

Рис. 2 Ядра Мозжечка.

Белое вещество заднего мозга (substantia alba metencephali).

Мост

Мост представляет собой большой белый вал. На его выпуклой вентральной поверхности по серединной линии располагается продольная основная борозда (sulcus basilaris). По ее сторонам выступают два хорошо выраженных пирамидных возвышения (eminentia piramidalis), в толще которых проходят пирамидные пути.

На фронтальных разрезах моста, проведенных на различных уровнях, можно видеть расположение пучков нервных волокон. В более массивной вентральной части толщи моста (pars ventralis pontis) впереди продольных пирамидных пучков располагаются поперечно идущие волокна моста, в совокупности образующие верхний пучок моста (fasciculus pontis superior). Дорсальнее между пирамидными пучками идут поперечные волокна моста (fibrae pontis transversae). Направляясь к задним отделам средних ножек мозжечка (pedunculus cerebellaris medius), они образуют нижний пучок моста (fasciculus pontis inferior).

Поперечные волокна моста образуют поверхностный и глубокий слои средних ножек мозжечка, соединяя ствол мозга (truncus cerebri) и мозжечок. Поперечные пучки по средней линии перекрещиваются. Ближе к латеральной поверхности основания моста проходит средний пучок моста (fasciculus pontis medius).

Между поперечными пучками, но медиальнее среднего пучка располагаются продольные пучки (fasciculi longitudinalis), принадлежащие к пирамидным путям.

На уровне границы между вентральной и дорсальной частями моста располагается пучок поперечно идущих слуховых волокон, образующих трапециевидное тело (corpus trapezoideum).

Ближе к заднему краю моста выходит лицевой нерв (nervus facialis), латеральнее лежит преддверно-улитковый нерв (nervus vestibulocochlearis).

Мозжечок

Белое вещество, мозговое тело мозжечка (corpus medullare cerebelli), залегает в его толще и через посредство трех пар ножек (pedunculi cerebellares inferiores, medii et posterioris) соединяет серое вещество мозжечка с головным и спинным мозгом.

Белое вещество, разветвляясь и проникая в каждую дольку мозжечка, образует древо жизни (arbor vita)

Серое вещество среднего мозга (substantia grisea mesencephali).

На поперечных срезах среднего мозга видно, что в толще холмиков крыши среднего мозга (colliuli tecti mesencephali) залегают скопления серого вещества, в верхнем холмике (colliculus superior) они называются серым слоем верхнего холмика (stratum griseum colliculi superioris), а в нижнем (colliculus inferior) – ядром нижнего холмика (nucleus colliculi inferioris). Серый слой верхнего холмика состоит из зрительных ядер, а ядро нижнего холмика – из слуховых.

Медиальнее расположен мозговой водопровод (aquaeductus cerebli), вокруг которого располагается центральное серое вещество (substantia grisea centralis). В его толще залегают ядра глазодвигательного и блокового нервов (nuclei nervi oculomotorius et trochlearis).

Вентральнее можно различить большие красные ядра (nuclei ruber) и черное вещество (substantia nigra). Эти структуры относятся к двигательной системе.

Рис. Поперечный срез среднего мозга на уровне верхнего холмика.

1. substantia grisea centralis

2. Aqueductus cerebri

4. Pedunculus cerebri

5. Nucleus rubber

6. Substantia nigra

7. Fossa interpeduncularis

9. Colliculus superior

Белое и серое вещество спинного мозга – функции, состав и расположение

вещество спинного мозга передает и получает сигналы в виде нервных импульсов
    Содержимое:
  1. Функции белого и серого вещества
  2. Чем образовано серое вещество
  3. Из чего состоит белое вещество
  4. Где находится серое вещество
  5. Где располагается белое вещество
  6. Чем опасно поражение белого и серого вещества

Если посмотреть на разрез позвоночного столба, можно увидеть, что белое и серое вещество спинного мозга имеют свое анатомическое строение и расположение, во многом определяющее функции и задачу каждого из них. Внешний вид напоминает белую бабочку или букву Н, окруженную тремя серыми канатиками или пучками волокон.

Функции белого и серого вещества


Спинной мозг человека выполняет несколько важных функций. Благодаря анатомическому строению головной мозг получает и отдает сигналы, позволяющие человеку двигаться, чувствовать боль. Во многом этому способствует устройство позвоночного столба и конкретно мягких мозговых тканей:
  • анатомическое расположение белого и серого вещества спинного мозга Белое вещество спинного мозга человека выполняет функцию проводника нервных импульсов. Именно в этой части мозговой ткани проходят восходящие и нисходящие проводниковые пути. Таким образом, рефлекторная функция белого вещества заключается в посреднической деятельности.
  • Серое вещество выполняет рефлекторную функцию – оно создает и обрабатывает нервные импульсы, которые через белые структуры передаются в полушария мозга и обратно. Обеспечить рефлекторную функцию серого вещества позволяет большое количество нервных клеток и немиелизированных отростков.

Структура спинного мозга способствует тесной взаимосвязи между двумя основными компонентами. Для белого вещества характерна основная функция передачи нервных импульсов. Это становится возможным благодаря тесному прилеганию к серой сердцевине в виде проходящих канатиков нервных волокон, на всей протяженности позвоночного столба.

Чем образовано серое вещество


Серое вещество спинного мозга образовано из около 13 млн. нервных клеток. В составе присутствует большое количество немиелизированных отростков и клеток глии. Проходя воль всего позвоночника, нервные ткани образуют серые столбы.

В зависимости от анатомического расположения, принято различать передние, задние и боковые отделы. У каждого столба своя структура и предназначение.
  • Задние рога серого вещества спинного мозга образованы вставочными нейронами. Они воспринимают сигналы от клеток, расположенных в ганглиях.
  • серое вещество образовано около 13 млн. нервных клеток Передние рога серого вещества спинного мозга образованы двигательными нейронами. Аксоны, выходя из спинномозгового пространства, образуют нервные корешки. Главной задачей передних рогов является иннервация подконтрольных мышечных тканей и скелетной мускулатуры.
  • Боковые рога образованы висцеральными и чувствительными клетками, отвечающими за моторику.

По сути, серое вещество представляет собой скопление нервных клеток с разным предназначением и функциональными возможностями.

Из чего состоит белое вещество


Белое вещество спинного мозга образовано отростками или пучками нервных клеток, нейронами, создающих проводящие пути. Для обеспечения беспрепятственной передачи сигнала, анатомическая структура включает три основных группы волокон:
  • белое вещество образовано отростками, входящими в состав проводящих путей Ассоциативные волокна – являются короткими пучками нервных окончаний, расположенных на различных уровнях позвоночного столба.
  • Восходящие пути – передают сигнал от мышечных тканей к центрам полушарий и мозжечку.
  • Нисходящие пути – длинные пучки для передачи сигнала к рогам серой оболочки.

Строение белого вещества включает наличие межсегментных волокон, расположенных по периферии серой мозговой ткани. Таким образом, осуществляется передача сигналов и сотрудничество между главными сегментами спинномозговых элементов.

Где находится серое вещество


Серое вещество расположено в центре спинного мозга, на протяженности всей длины позвоночного столба. Концентрация сегмента неоднородна. На уровне шейного, а также поясничного отдела, преобладают серые мозговые ткани. Такая структура обеспечивает подвижность человеческого тела и возможность выполнения основных функций.

В центре серого вещества располагается спинномозговой канал, посредством которого обеспечивается циркуляция ликвора, и соответственно передача питательных элементов нервным волокнам и тканям.

Где располагается белое вещество


Белая оболочка располагается вокруг серой сердцевины. В грудной клетке концентрация сегмента существенно увеличивается. Между левой и правой долями проложен тонкий канал commissura alba, соединяющий между собой две части элемента.

Борозды спинномозговой ткани разграничивают структуру мозговой ткани, образуя три столба. Основной компонент белого вещества - это нервные волокна, быстро и эффективно передающие сигнал по канатикам к мозжечку или полушариям и обратно.

Чем опасно поражение белого и серого вещества


Клеточная организация сегментов спинномозговой ткани обеспечивает быструю передачу нервных импульсов, контролирует двигательные и рефлекторные функции.

повреждение серого и белого вещества отражается на двигательных и проводниковых функциях спинного мозга Любые поражения, влияющие на анатомическую структуру, проявляются в нарушении основных функций организма:

  • Поражение серого вещества – главной задачей сегмента является обеспечение рефлекторной и двигательной функции. Поражение проявляется в онемении, частичной или полной парализации конечностей.
    На фоне нарушений развивается мышечная слабость, невозможность выполнять естественные ежедневные задачи. Нередко паталогические процессы сопровождаются проблемами в дефекации и мочеиспускании.
  • Поражения белой оболочки – нарушается передача нервных импульсов к полушариям и мозжечку. В результате пациент испытывает головокружения, потерю ориентации. Наблюдаются сложности в координации движения. При сильных нарушениях происходит парализация конечностей.

Топография белого и серого вещества показывает тесную взаимосвязь двух основных структур полости позвоночного столба. Любые нарушения отражаются на двигательной и рефлекторной функции человека, а также работе внутренних органов.

Серое и белое вещество головного мозга

Человеческий головной мозг состоит из белого и серого вещества. Первое — это все, что заполнено между серым веществом на коре и базальными ядрами. На поверхности имеется равномерный слой серого вещества с нервными клетками, толщина которого составляет до четырех с половиной миллиметров.

Изучим подробнее, что такое серое и белое вещество в головном мозге.

Из чего состоят эти вещества

Вещество ЦНС бывает двух типов: белого и серого.

Белые вещества состоят из множества нервных волокон и отростков нервных клеток, оболочка которых имеет белый цвет.

Серые вещества состоят из нервных клеток с отростками. Нервные волокна соединяют разные отделы ЦНС и нервные центры.

Серое и белое вещество спинного мозга

Неоднородное вещество этого органа бывает серым и белым. Первое образуется огромным количеством нейронов, которые сконцентрированы в ядра и бывают трех типов:

  • корешковые клетки;
  • пучковые нейроны;
  • внутренние клетки.

Белое вещество спинного мозга окружает серое вещество. В него входят нервные отростки, состовляющие три системы волокон:

  • вставочные и афферентные нейроны, соединяющие разные участки спинного мозга;
  • чувствительные афферентные, являющиеся длинными центростремительными;
  • двигательные афферентные или длинные центробежные.

Продолговатый мозг

Из курса анатомии мы знаем, что спинной мозг переходит в продолговатый. Часть этого мозга наверху толще, чем внизу. Средняя длина его составляет 25 миллиметров, а форма напоминает усеченный конус.

В нем развиваются гравитационные и слуховые органы, связанные с дыханием и циркуляцией крови. Поэтому ядра серого вещества здесь регулируют равновесие, обмен веществ, кровообращение, дыхание, координацию движений.

Задний мозг

Этот мозг состоит из моста и мозжечка. Рассмотрим серое и белое вещество в них. Мостом является большой белый валик с задней стороны от основания. С одной стороны выражена его граница с ножками мозга, а с другой — с продолговатым. Если сделать поперечный срез, то белое вещество мозга и серого ядра здесь будут видны очень хорошо. Поперечные волокна делят мост на вентральный и дорсальный участки. В вентральной части в основном присутствует белое вещество проводящих путей, а серое здесь образует свои ядра.

Дорсальная часть представлена ядрами: переключательными, ретикулярной формации, сенсорных систем и черепно-мозговых нервов.

Мозжечок находится под затылочными долями. В него входят полушария и средняя часть под названием "червь". Серое вещество составляет кору мозжечка и ядра, которые бывают шатро-, шаровидным, пробковидным и зубчатым. Белое вещество головного мозга в этой части расположено под корой мозжечка. Оно проникает во все извилины в качестве белых пластинок и состоит из разных волокон, которые либо связывают дольки и извилины, либо направлены к внутренним ядрам, либо соединяют разделы мозга.

Средний мозг

Он начинается из среднего мозгового пузыря. С одной стороны соответствует поверхности ствола мозга между шишковидной железой и верхним мозговым парусом, а с другой - участку между сосцевидными телами и передней частью моста.

В него входит мозговой водопровод, с одной стороны которого граница обеспечивается крышей, а с другой - покрышкой ножек мозга. На вентральном участке различают заднее продырявленное вещество и ножки большого мозга, а на дорсальном — пластинку крыши и ручки нижнего и верхнего бугорков.

Если рассматривать в мозговом водопроводе белое и серое вещество мозга, то мы увидим, что белое окружает центральное серое вещество, состоящее из мелких клеток и имеющее толщину от 2 до 5 миллиметров. В его состав входят блоковый, тройничный и глазодвигательный нервы вместе с добавочным ядром последнего и промежуточным.

Промежуточный мозг

Он находится между мозолистым телом и сводом, а по бокам срастается с конечным мозгом. Дорзальный отдел состоит из зрительных бугров, на верхней части которых находится надбугорье, а в вентральной располагается нижнебугорная область.

Серые вещества здесь состоят из ядер, которые связаны с центрами чувствительности.
Белые вещества представлены проводящими путями разных направлений, гарантирующих связь образований с корой мозга и ядрами. В промежуточный мозг входят также гипофиз и эпифиз.

Конечный мозг

Представлен двумя полушариями, которые отделяет щель, идущая вдоль них. Она соединяется в глубине мозолистым телом и спайками.

Полость представлена боковыми желудочками, находящимися в одном и втором полушарии. Эти полушария состоят из:

  • плаща из неокортекса или шестислойной коры, различающихся нервными клетками;
  • полосатого тела из базальных ядер — древнего, старого и нового;
  • перегородки.

Но иногда встречается и другая классификация:

  • обонятельный мозг;
  • подкорка;
  • серое вещество коры.

Не касаясь серого вещества, остановимся сразу на белом.

Об особенностях белого вещества полушарий

Белое вещество головного мозга занимает все пространство между серым и базальными ядрами. Здесь находится огромное количество нервных волокон. В белом веществе имеются следующие участки:

  • центральное вещество внутренней капсулы, мозолистого тела и длинные волокна;
  • лучистый венец из расходящихся волокон;
  • полуовальный центр в наружных частях;
  • вещество, находящееся в извилинах между бороздами.

Нервные волокна бывают:

  • комиссуральные;
  • ассоциативные;
  • проекционные.

В белое вещество входят нервные волокна, которые связаны извилинами одной и другой коры полушарий и другими образованиями.

Нервные волокна

В основном комиссуральные волокна находятся в составе мозолистого тела. Они расположены в мозговых комиссурах, которые соединяют кору на разных полушариях и симметричные точки.

Волокна ассоциативные группируют участки на одном полушарии. При этом короткие соединяют соседние извилины, а длинные — находящиеся на далеком расстоянии друг от друга.

Волокна проекционные связывают кору с теми образованиями, что расположены ниже, и далее с периферией.

Если внутреннюю капсулу посмотреть в разрезе фронтально, будут видны чечевицеобразное ядро и задняя ножка. Проекционные волокна делятся на:

  • волокна, расположенные от таламуса к коре и в противоположную сторону, они возбуждают кору и являются центробежными;
  • волокна, направленные к двигательным ядрам нервов;
  • волокна, проводящие импульсы к мышцам всего тела;
  • волокна, направленные от коры к мостовым ядрам, обеспечивая регулирующее и тормозное действие на работу мозжечка.

Те проекционные волокна, которые расположены наиболее близко к коре, создают лучистый венец. Потом главная их часть переходит во внутреннюю капсулу, где белое вещество находится между хвостатым и чечевицеобразным ядрами, а также таламусом.

На поверхности имеется чрезвычайно сложный рисунок, где чередуются бороздки и валики между ними. Их называют извилинами. Глубокие борозды разделяют полушария на большие участки, которые получили название долей. Вообще борозды мозга являются глубоко индивидуальными, они могут очень сильно отличаться у разных людей.

В полушариях есть пять долей:

  • лобная;
  • теменная;
  • височная;
  • затылочная;
  • островок.

Борозда центральная берет начало наверху полушария и движется вниз и вперед, к лобной доле. Участок сзади от центральной борозды является теменной долей, которая заканчивается теменно-затылочной бороздой.

Лобная доля делится на четыре извилины, вертикальные и горизонтальные.
В височной доле латеральная поверхность представлена тремя извилинами, которые отграничены друг от друга.

Борозды затылочной доли изменчивы. Но у всех, как правило, имеется поперечная, которая соединена с концом борозды межтеменной.

На теменной доле расположена борозда, идущая параллельно центральной горизонтально и сливающаяся с другой бороздой. В зависимости от их расположения эта доля поделена на три извилины.

Островок имеет треугольную форму. Он покрыт недлинными извилинами.

Поражения головного мозга

Благодаря достижениям современной науки стало возможным проведение высокотехнологичной диагностики мозга. Таким образом, если имеется патологический очаг в белом веществе, его можно выявить на ранней стадии и своевременно назначить терапию.

Среди заболеваний, которые вызваны поражением этого вещества, выделяют его нарушения в полушаниях, патологии капсулы, мозолистого тела и синдромы смешанного характера. Например, при повреждениях задней ножки одну половину человеческого тела может парализовать. Эта проблема может развиваться с нарушением чувствительности или дефектом поля зрения. Сбои в работе мозолистого тела приводят к психическим расстройствам. При этом человек перестает узнавать окружающие предметы, явления и прочее или не производит целенаправленных действий. В случае если очаг является двусторонним, могут наблюдаться расстройства глотания и речи.

Невозможно переоценить значение как серого, так и белого вещества в головном мозге. Поэтому чем раньше выявить наличие патологии, тем больше шансов, что лечение пройдет успешно.

продолговатого и среднего, где располагается как повысить и увеличить устойчивость

Нервная система – это одна из самых сложных систем в организме человека. Хотя она остаётся невидимой для глаз людей, в отличие от опорно-двигательной, но без неё жизнь была бы невозможной. В ней находится два важнейших органа: головной и спинной мозг. В этой статье будет рассматриваться со всех сторон – серое вещество спинного мозга. Какую бесценную роль оно играет? Из чего оно состоит? Какие функции выполняет? И многое другое…

Строение спинного мозга

Спинной мозг в длину занимает около 44 см, в ширину – примерно 1 см, а его масса — 35 г (это 2,7% от массы головного мозга).

Основная функция спинного мозга состоит в том, чтобы отвечать за взаимодействие всех органов в организме с центральной нервной системой. Он словно маленький проводник, по которому импульсы передаются в головной мозг. А мозг, получая их, приводит эти сигналы в действие.

По своей сути, строение спинного мозга довольно простое: белое и серое вещество. Но их структура и предназначение очень серьёзное и сложнейшее.

Наши читатели рекомендуют

Для профилактики и лечения БОЛЕЗНЕЙ СУСТАВОВ наша постоянная читательница применяет набирающий популярность метод БЕЗОПЕРАЦИОННОГО лечения, рекомендованный ведущими немецкими и израильскими ортопедами. Тщательно ознакомившись с ним, мы решили предложить его и вашему вниманию.

Чем образовано серое вещество

Серое вещество спинного мозга, в разрезе, представляет собой форму бабочки, с раскрывшимися крылышками. Снаружи оно покрыто белым веществом. Внутри серое вещество спинного мозга образовано из скопления приблизительно 12 миллионов нервных клеточек и огромного количества нейронов.

В спинном мозге серое вещество располагается в центре, а по центру самого вещества можно увидеть спинномозговой канал. С помощью этого маленького органа ткани, волокна и каждая клеточка получают питательные элементы.

Спинной мозг, расположенный почти по всей длине позвоночника, имеет неодинаковое соотношение белого вещества по сравнению с серым. Серое вещество мозга образовано в большей степени в поясничном отделе, а меньше всего его в грудном отделе. Белое же вещество, будет располагаться в других жизненно важных органах.

Серое вещество образовано не только в спинном мозге. Оно также является неотъемлемой частью:

  • продолговатого мозга (это следующее продолжение спинного мозга). Серое вещество продолговатого мозга представлено несколькими ядрами черепных нервов и центрами, отвечающими за кровообращение и дыхание;
  • промежуточного мозга. Белое и серое вещество среднего мозга (ещё одно название, которое имеет промежуточный мозг) способно развиваться из заднего отдела мозгового пузыря. А его передний отдел в итоге должен образовывать конечный мозг.

Рога серого вещества

Серое вещество не имеет однородную структуру. Исследования показывают, что оно, скорее наоборот, состоит из множества разнообразных выступов по всей длине. Эти выступы принято называть рогами. В зависимости от того, в каком месте рога находятся, учёные дали им свои названия. Каждый такой рог имеет свою структуру и назначение.

Рога серого вещества

  • Передние рога. Образовываются двигательными нейронами. Их цель – обеспечить различные ткани и органы нервами, чтобы все они могли быть связаны с центральной нервной системой.
  • Задние рога. Развивается вставочными нейронами. У них главная задача – принимать импульсы и сигналы, которые подают им клеточки организма.
  • Боковые рога. Возникают благодаря чувствительным клеткам, отвечающим за двигательную активность всего организма и способность человека выполнять поставленные перед ним задачи.

Если не эти выступы, имеющие такое смешное название «рога», то у людей не было бы рефлексов. А ведь вся жизнь человека построена на рефлексах. И даже головной мозг может не принимать в этом вообще никакого участия.

Нет серого вещества – нет рефлексов

Суть рефлекса, как раз и заключается в том, чтобы любые действия, приходящие в голову, тут же выполнялись, без особого обдумывания и размышления над ними. Например: подняться утром с кровати, посмотреть на себя в зеркало, поднять упавший предмет, одеться, убрать руку от огня, моргать, шевелить пальцами, переставлять ноги во время ходьбы, жевать пищу, взять какую-то вещь, написать или напечатать текст, вырезать фигуру из бумаги и так далее.

Разве это не чудо? А ведь большинство людей так не считают. Для них все эти движения – пустая формальность, не требующая особого внимания. Но если не серое и белое вещество спинного мозга, то пришлось бы много времени тратить на то, чтобы осмыслить каждую деталь своей жизни и понять, как её выполнять. А так, для автоматического выполнения этих дел, не нужно никакой мозговой деятельности.

В каждом человеке такие рефлексы уже заложены с момента его рождения. А вот учёным-робототехникам приходится долго работать над тем, чтобы хоть как-то воспроизвести то, что человек выполняет без особого труда. Роботы, созданные людьми – всего лишь жалкое подобие уникального строения человеческого организма. В программу деятельности робота включены только некоторые функции из огромного списка, которые может выполнять любое живое создание.

И хотя науке удалось увеличить количество этих функций, но до оригинала ещё очень далеко!

Функции серого вещества

Брор Рексед (анатом из Швеции) более полувека назад представил строение серого вещества и его функции в виде десяти слоёв (чаще называют пластин). У каждого слоя свои особенности и заложенные задачи. Рассмотрим их подробнее, чтобы ещё больше убедиться в том, как мы удивительно созданы.

  • 1 пластина – тонкий слой, состоящий из сенсорных нейронов, реагирующих на болевые ощущения и на холод.
  • 2 и 3 пластины – слой, представляющий собой вставочные нейроны, замедляющие или, наоборот, активизирующие реакцию на холод и боль.
  • 4 пластина – состоит из нейронов, распознающих раздражение рецепторов.
  • 5 и 6 пластины – нейроны, реагируют на информацию, приходящую от рецепторов конечностей и туловища.
  • 7 пластина – нейроны для передачи информации от нижних конечностей и вегетативной нервной системы.
  • 8 пластина – нейроны, участвующие в контроле движения и, по совместительству, связаны с нейронами следующего слоя.
  • 9 пластина – нейроны, доставляющие мускулатуре туловища конечностей, необходимы для жизнедеятельности, волокна.
  • 10 пластина – мелкие нейроны, находящиеся вокруг спинномозгового канала. Их задача – увеличивать способность обрабатывать информацию, полученную рецепторами, при изменениях в температуре, ощущении боли и холода.

Поражение серого вещества

Из выше написанной информации, можно сделать логичный вывод: маленькое, скрытое от человеческих глаз, серое вещество, выполняет рефлекторные и двигательные функции. Поражение, пусть даже малейшей части этого органа приводит к тому, что может образоваться полная или частичная парализация конечностей.

Человек начинает ощущать слабость, онемение в руках и ногах, боли в области спины и груди, нарушения в потоотделении, судороги, проблемы с мочеиспусканием и половой жизнью, повышенная температура тела, учащённое дыхание, теряется чувствительность (это приводит к ожогам, обморожению, ведь рецепторы вовремя не передают сигналы в мозг).

Если запустить этот процесс, то начнётся хроническая воспалительная реакция, неизбежно ведущая к болезни Бехтерева, Альцгеймера, Паркинсона или невралгии спинного мозга, а также проблемами в работе других внутренних органов.

Кроме того, те простые задачи, о которых писалось ранее, становятся для человека невыполнимой миссией. Ему всё тяжелее даётся движение. Тело, как будто, находится в оковах, из которых, порой, сложно выбраться.

Профилактика нарушения серого вещества

Если человек замечает за собой, ранее описанные, симптомы, приводящие к плохому самочувствию, лучше не тянуть с этим. Ведь лучше один грамм профилактики, чем один килограмм лечения!

Пожалуй, самым мудрым решением, в этой ситуации, было бы обратиться к врачу – специалисту, который подскажет нужное обследование и лечение.

Как повысить устойчивость серого вещества к страшным заболеваниям спинного мозга? Конечно, не существует такого метода профилактики, который бы спас на 100% от всевозможных рисков заболеть. Однако, лучше перебдеть, чем недобдеть!

  • Регулярные медицинские осмотры, несомненно, отнимают много времени и сил, но они также могут и спасти чью-то жизнь! Не стоит пренебрегать этим полезным способом!
  • Следить, чтобы питание было не столько разнообразное, сколько полезное, наполненное витаминами и лишённое химии.

    Корица положительно влияет на спинной мозг

  • Избегать черепно-мозговых травм. Даже занимаясь некоторыми видами спорта, можно легко заработать проблемы со здоровьем (например, бокс, рукопашные бои, разные виды самообороны, горный спорт). Но при этом не избегать регулярных, умеренных, физических нагрузок. Особенно, упражнения, направленные на укрепление спины, способствуют прекрасному состоянию.
  • Больше находиться на свежем воздухе.
  • Вести активный и здоровый образ жизни. Исключить чрезмерное употребление алкогольных напитков и, навсегда, избавиться от табака.
  • Специи, особенно корица, положительно влияют на спинной мозг. Но здесь тоже главное – не переборщить.
  • Выпивать достаточное количество воды в день. Это способствует нормальному функционированию не только головного мозга, но и спинного также.

Если всё-таки врачи обнаружили недостатки в здоровье, в дальнейшем, следует постараться находиться на постоянном контроле у специалистов и выполнять советы врачей.

Здоровье за деньги не купишь, а вот потерять его можно легко. Поэтому не стоит забывать о таком маленьком, но, удивительно сложном, органе, как серое вещество спинного мозга!

Белое вещество — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 сентября 2019; проверки требуют 5 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 сентября 2019; проверки требуют 5 правок.

Белое вещество (лат. substantia alba) — компонент центральной нервной системы позвоночных животных и человека, состоящий главным образом из пучков аксонов, покрытых миелином. Противопоставляется серому веществу мозга, состоящему из клеточных тел нейронов. Цветовая дифференциация белого и серого вещества нервной ткани обусловлена белым цветом миелина.

В спинном мозге белое вещество находится снаружи от серого. Макроскопически в белом веществе спинного мозга различают передние канатики (funiculus anterior), боковые канатики (funiculus lateralis) и задние канатики (funiculus posterior).

В головном мозге белое вещество наоборот находится внутри и окружено серым веществом. Однако в белом веществе также присутствуют участки с серым веществом — скопления нервных клеток. Их называют ядрами (nuclei).

Белое вещество состоит из пучков, которые соединяют различные области серого вещества (места расположения тел нервных клеток) мозга друг с другом и переносят нервные импульсы между нейронами. Миелин действует как изолятор, который позволяет электрическим сигналам прыгать, а не проходить через Аксон, увеличивая скорость передачи всех нервных сигналов.

Общее число длинных волокон в полушарии головного мозга составляет 2% от общего числа кортико-кортикальных волокон (через кортикальные области) и примерно такое же число, как те, которые связываются между двумя полушариями в самой большой белой тканевой структуре мозга, мозолистом теле. Шюц и Брайтенберг отмечают: "как грубое правило, количество волокон определенного возраста длины обратно пропорционально их длине.

Белое вещество у неэластичных взрослых составляет 1,7-3,6% крови.

Белое вещество- это ткань, через которую проходят сообщения между различными областями серого вещества в центральной нервной системе. Белое вещество является белым из-за жирового вещества (миелина), которое окружает нервные волокна (аксоны). Этот миелин содержится почти во всех длинных нервных волокнах и действует как электрическая изоляция. Это важно, потому что позволяет быстро передавать сообщения с места на место.

В отличие от серого вещества, пик развития которого приходится на двадцатилетний возраст, белое вещество продолжает развиваться и достигает пика в среднем возрасте.

  • Черкасов В. Г., Кравчук С. Ю Анатомія людини / Черкасов В. Г., Кравчук С. Ю. — Вінниця: Нова книга 2011–640 с. ISBN 978-966-382-214-3

Спинной мозг — Википедия

Спинно́й мозг (лат. medulla spinalis) — это орган центральной нервной системы позвоночных, расположенный в позвоночном канале[1]. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекреста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом (лат. canalis centralis). Спинной мозг защищён мягкой, паутинной и твёрдой мозговой оболочкой. Пространства между оболочками и спинномозговым каналом заполнены спинномозговой жидкостью. Пространство между внешней твёрдой оболочкой и костью позвонков называется эпидуральным и заполнено жировой тканью и венозной сетью.

Спинной мозг человека

Внешнее строение[править | править код]

Спинной мозг (лат. medulla spinalis) имеет явную сегментарную организацию. Он обеспечивает связи головного мозга с периферией и осуществляет сегментарную рефлекторную деятельность[2].

Залегает спинной мозг в позвоночном канале от верхнего края I шейного позвонка до I или верхнего края II поясничного позвонка, повторяя направление кривизны соответствующих частей позвоночного столба. У плода в возрасте 3 месяцев он оканчивается на уровне V поясничного позвонка, у новорождённого — на уровне III поясничного позвонка[2].

Спинной мозг без резкой границы переходит в продолговатый мозг у места выхода первого шейного спинномозгового нерва. Скелетотопически эта граница проходит на уровне между нижним краем большого затылочного отверстия и верхним краем I шейного позвонка[2].

Внизу спинной мозг переходит в коническое заострение (лат. conus medullaris), продолжающееся в концевую (спинномозговую) нить (лат. filum terminale (spinale) ), которая имеет поперечник до 1 мм и является редуцированной частью нижнего отдела спинного мозга. Концевая нить (за исключением её верхних участков, где есть элементы нервной ткани) представляет собой соединительнотканное образование. Вместе с твёрдой мозговой оболочкой она проникает в крестцовый канал и прикрепляется у его конца. Та часть концевой нити, которая располагается в полости твёрдой мозговой оболочки и не сращена с ней, называется внутренней концевой нитью (лат. filum terminale internum), остальная её часть, сращённая с твёрдой мозговой оболочкой, — это наружная концевая нить (лат. filum terminale externum). Концевая нить сопровождается передними спинномозговыми артериями и венами, а также одним или двумя корешками копчиковых нервов[2].

Спинной мозг не занимает целиком полость позвоночного канала: между стенками канала и мозгом остаётся пространство, заполненное жировой тканью, кровеносными сосудами, оболочками мозга и спинномозговой жидкостью[2].

Длина спинного мозга у взрослого колеблется от 40 до 45 см, ширина — от 1,0 до 1,5 см, а масса равна в среднем 35 г.[2]

Различают 3 поверхности спинного мозга:

  • несколько уплощённую переднюю
  • немного выпуклую заднюю
  • две почти округлые боковые, переходящие в переднюю и заднюю[2]

Спинной мозг не на всём протяжении имеет одинаковый диаметр. Его толщина несколько увеличивается снизу вверх. Наибольший размер в поперечнике отмечается в двух веретенообразных утолщениях: в верхнем отделе — это шейное утолщение (лат. intumescentia cervicalis), соответствующее выходу спинномозговых нервов, идущих к верхним конечностям, и в нижнем отделе — это пояснично-крестцовое утолщение (лат. intumescentia lumbosacralis), — место выхода нервов к нижним конечностям. В области шейного утолщения поперечный размер спинного мозга достигает 1,3-1,5 см, в середине грудной части — 1 см, в области пояснично-крестцового утолщения — 1,2 см; переднезадний размер в области утолщений достигает 0,9 см, в грудной части — 0,8 см[2].

Шейное утолщение начинается на уровне III—IV шейного позвонка, доходит до II грудного, достигая наибольшей ширины на уровне V—VI шейного позвонка. Пояснично-крестцовое утолщение простирается от уровня IX—X грудного позвонка до I поясничного, наибольшая ширина его соответствует уровню XII грудного позвонка (на высоте 3-го поясничного спинномозгового нерва)[2].

Форма поперечных срезов спинного мозга на разных уровнях различна: в верхней части срез имеет форму овала, в средней части округлый, а в нижней приближается к квадратной[2].

На передней поверхности спинного мозга, по всей его длине, залегает передняя срединная щель (лат. fissura mediana anterior), в которую впячивается складка мягкой мозговой оболочки — промежуточная шейная перегородка (лат. septum cervicale intermedium). Эта щель менее глубокая у верхнего и нижнего концов спинного мозга и наиболее выражена в средних его отделах[2].

На задней поверхности мозга имеется очень узкая задняя срединная борозда (лат. sulcus medianus posterior), в которую проникает пластинка глиозной ткани — задняя срединная перегородка (лат. septum medianum dorsale). Щель и борозда делят спинной мозг на две половины — правую и левую. Обе половины соединены узким мостиком мозговой ткани, в середине которой располагается центральный канал (лат. canalis centralis) спинного мозга[2].

На боковой поверхности каждой половины спинного мозга находятся две неглубокие борозды. Переднелатеральная борозда (лат. sulcus ventrolateralis), расположенная кнаружи от передней срединной щели, более отдалённая от неё в верхней и средней частях спинного мозга, чем в нижней его части. Заднелатеральная борозда (лат. sulcus dorsolateralis), лежит кнаружи от задней срединной борозды. Обе борозды идут по всей длине спинного мозга[2].

В шейном и отчасти в верхнем грудном отделах, между задней срединной и заднелатеральной бороздами, проходит нерезко выраженная задняя промежуточная борозда (лат. sulcus intermedius dorsalis)[2].

У плода и новорожденного иногда встречается довольно глубокая передняя промежуточная борозда, которая, следуя по передней поверхности верхних отделов шейной части спинного мозга, располагается между передней срединной щелью и переднелатеральной бороздой[2].

Характерной особенностью спинного мозга является его сегментарность и правильная периодичность выхода спинномозговых нервов.

Спинной мозг делят на 5 частей: шейную (лат. pars cervicalis), грудную (лат. pars thoracicalis), поясничную (лат. pars lumbalis), крестцовую (лат. pars sacralis) и копчиковую части (лат. pars coccygea). При этом отнесение сегмента спинного мозга к той или иной части зависит не от реального его расположения, а от того в каком отделе выходящие из него нервы покидают позвоночный канал. Шейную часть составляют 8 сегментов, грудную — 12, поясничную — 5, крестцовую — 5, копчиковую — от 1 до 3. Итого — 31—33 сегмента[2].

Корешки спинного мозга[править | править код]

Из переднелатеральной борозды или вблизи неё выходят передние корешковые нити (лат. fila radicularia), представляющие собой аксоны нервных клеток. Передние корешковые нити образуют передний (двигательный) корешок (лат. radix ventralis). Передние корешки содержат центробежные эфферентные волокна, проводящие двигательные импульсы на периферию тела: к поперечно-полосатым и гладким мышцам, железам и др.[2]

В заднелатеральную борозду входят задние корешковые нити, состоящие из отростков клеток, залегающих в спинномозговом узле. Задние корешковые нити образуют задний корешок (лат. radix dorsalis). Задние корешки содержат афферентные (центростремительные) нервные волокна, проводящие чувствительные импульсы от периферии, то есть от всех тканей и органов тела, в ЦНС. На каждом заднем корешке расположен спинномозговой узел (лат. ganglion spinale)[2].

В боковых рогах находятся висцеральные моторные и чувствительные центры. Аксоны этих клеток проходят через передний рог спинного мозга и выходят из спинного мозга в составе передних корешков[источник не указан 1838 дней].

Направление корешков неодинаково: в шейном отделе они отходят почти горизонтально, в грудном — направляются косо вниз, в пояснично-крестцовом отделе следуют прямо вниз[2].

Передний и задний корешки одного уровня и одной стороны тотчас снаружи от спинномозгового узла соединяются, образуя спинномозговой нерв (лат. n. spinalis), который является, таким образом, смешанным. Каждая пара спинномозговых нервов (правый и левый) соответствует определённому участку — сегменту — спинного мозга[2].

Следовательно, в спинном мозге насчитывается такое количество сегментов, сколько пар спинномозговых нервов[2].

Белое и серое вещество[править | править код]

На поперечных срезах спинного мозга видно расположение белого и серого вещества. Серое вещество занимает центральную часть и имеет форму бабочки с расправленными крыльями или буквы Н. Белое вещество располагается вокруг серого, на периферии спинного мозга[2].

Соотношение серого и белого вещества в разных частях спинного мозга различно. В шейной части, особенно на уровне шейного утолщения, серого вещества значительно больше, чем в средних участках грудной части, где количество белого вещества намного (примерно в 10—12 раз) превышает массу серого вещества. В поясничной области, особенно на уровне поясничного утолщения, серого вещества больше, чем белого. По направлению к крестцовой части количество серого вещества уменьшается, но в ещё большей степени уменьшается количество белого. В области мозгового конуса почти вся поверхность поперечного среза выполнена серым веществом, и только по периферии располагается узкий слой белого[2].

Белое вещество[править | править код]

Белое вещество (лат. substantia alba) представляет собой сложную систему различной протяжённости и толщины миелиновых и отчасти безмиелиновых нервных волокон и опорной нервной ткани — нейроглии, а также кровеносных сосудов, окружённых незначительным количеством соединительной ткани. Нервные волокна в белом веществе собраны в пучки[3].

Белое вещество одной половины спинного мозга связано с белым веществом другой половины очень тонкой, поперечно идущей впереди центрального канала белой спайкой (лат. commissura alba)[3].

Борозды спинного мозга, за исключением задней промежуточной борозды, разграничивают белое вещество каждой половины на три канатика спинного мозга (лат. funiculi medullae spinalis). Различают:

  • передний канатик (лат. funiculus ventralis) — часть белого вещества, ограниченная передней срединной щелью и переднелатеральной бороздой, или линией выхода передних корешков спинномозговых нервов;
  • боковой канатик (лат. funiculus lateralis) — между переднелатеральной и заднелатеральной бороздами;
  • задний канатик (лат. funiculus dorsalis) — между заднелатеральной и задней срединной бороздами[3].

В верхней половине грудной части и в шейной части спинного мозга задняя промежуточная борозда делит задний канатик на два пучка: более тонкий, лежащий внутри медиальный, так называемый тонкий пучок (лат. fasciculus gracilis), и более мощный латеральный клиновидный пучок (лат. fasciculus cuneatus). Ниже клиновидный пучок отсутствует. Канатики спинного мозга продолжаются и в начальный отдел головного — продолговатый мозг[3].

В составе белого вещества спинного мозга проходят проекционные, составляющие афферентные и эфферентные проводящие пути, а также ассоциативные волокна. Последние осуществляют связи между сегментами спинного мозга и образуют передние, боковые и задние собственные пучки (лат. fasciculi proprii ventrales, laterales et dorsales), которые прилегают к серому веществу спинного мозга, окружая его со всех сторон. К этим пучкам относятся:

  • дорсолатеральный путь (лат. tractus dorsolateralis) — небольшой пучок волокон, расположенный между вершиной заднего серого столба и поверхностью спинного мозга в непосредственной близости к заднему корешку
  • перегородочно-краевой пучок (лат. fasciculus septomarginalis) — тонкий пучок нисходящих волокон, вплотную прилежащий к задней срединной щели, прослеживается лишь в нижних грудных и поясничных сегментах спинного мозга
  • межпучковый пучок (лат. fasciculus interfascicularis) — образован нисходящими волокнами, расположенными в медиальной части клиновидного пучка, прослеживается в шейных и верхних грудных сегментах[3].
Серое вещество[править | править код]

Серое вещество спинного мозга (лат. substantia grisea) состоит главным образом из тел нервных клеток с их отростками, не имеющими миелиновой оболочки. В нём различают две боковые части, расположенные в обеих половинах спинного мозга, и поперечную часть, соединяющую их в виде узкого мостика, — центральное промежуточное вещество (лат. substantia intermedia centralis). Оно продолжается в боковые части, занимая их середину, как латеральное промежуточное вещество (лат. substantia intermedia lateralis)[3].

В срединных отделах центрального промежуточного вещества располагается очень узкая полость — центральный канал (лат. canalis centralis). Он тянется на протяжении всего спинного мозга, переходя вверху в полость IV желудочка. Внизу, в области мозгового конуса, центральный канал расширен и его диаметр достигает в среднем 1 мм; этот участок центрального канала получил название концевого желудочка (лат. ventriculus terminalis)[3].

Спинной мозг состоит из двух симметричных половин, отграниченных друг от друга спереди глубокой срединной щелью, а сзади — соединительнотканной перегородкой. На свежих препаратах спинного мозга невооружённым взглядом видно, что его вещество неоднородно. Внутренняя часть органа темнее — это его серое вещество (лат. substantia grisea). На периферии спинного мозга располагается более светлое белое вещество (лат. substantia alba). Серое вещество на поперечном сечении мозга представлено в виде буквы «Н» или бабочки. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога[4].

На протяжении спинного мозга меняется отношение серого и белого вещества. Серое вещество представлено наименьшим количеством клеток в грудном отделе. Наибольшим — в поясничном.

Серое вещество[править | править код]

Серое вещество спинного мозга состоит из тел нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии. Основной составной частью серого вещества, отличающей его от белого, являются мультиполярные нейроны[4].

Клетки, сходные по размерам, тонкому строению и функциональному значению, лежат в сером веществе группами, которые называются ядрами. Среди нейронов спинного мозга можно выделить следующие виды клеток:

  • корешковые клетки (лат. neurocytus radiculatus), аксоны которых покидают спинной мозг в составе его передних корешков;
  • внутренние клетки (лат. neurocytus internus), отростки которых заканчиваются синапсами в пределах серого вещества спинного мозга;
  • пучковые клетки (лат. neurocytus funicularis), аксоны которых проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определённых ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути.

Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии[4].

В задних рогах различают губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро. Между задними и боковыми рогами серое вещество вдаётся тяжами в белое, вследствие чего образуется сетеобразное разрыхление, получившее название сетчатого образования[4].

Губчатый слой задних рогов характеризуется широкопетлистым глиальным остовом, в котором содержится большое количество мелких вставочных нейронов[4].

В желатиозном веществе преобладают глиальные элементы. Нервные клетки здесь мелкие и количество их незначительно.

Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки).

Нейроны губчатой зоны, желатинозного вещества и вставочные клетки осуществляют связь между чувствительными клетками спинальных ганглиев и двигательными клетками передних рогов, замыкая местные рефлекторные дуги. В середине заднего рога располагается собственное ядро заднего рога. Оно состоит из вставочных нейронов, аксоны которых переходят через переднюю белую спайку на противоположную сторону спинного мозга в боковой канатик белого вещества, где они входят в состав вентрального спинно-мозжечкового и спинно-таламического путей и направляются в мозжечок и таламус[4].

Грудное ядро (ядро Кларка) состоит из крупных вставочных нейронов с сильно разветвлёнными дендритами. Их аксоны выходят в боковой канатик белого вещества той же стороны и в составе заднего спинально-мозжечкового пути (путь Флексига) поднимаются к мозжечку[4].

В промежуточной зоне различают медиальное промежуточное ядро, аксоны клеток которого присоединяются к переднему спинально-мозжечковому пути (пути Говерса) той же стороны, и латеральное промежуточное ядро, расположенное в боковых рогах и представляющее собой группу ассоциативных клеток симпатической рефлекторной дуги. Аксоны этих клеток покидают мозг вместе с соматическими двигательными волокнами в составе передних корешков и обособляются от них в виде белых соединительных ветвей симпатического ствола[4].

В передних рогах расположены самые крупные нейроны спинного мозга, которые имеют диаметр тела 100—150 мкм и образуют значительные по объёму ядра. Это так же, как и нейроны ядер боковых рогов, корешковые клетки, поскольку их аксоны составляют основную массу волокон передних корешков. В составе смешанных спинномозговых нервов они поступают на периферию и образуют моторные окончания в скелетной мускулатуре. Таким образом, эти ядра представляют собой моторные соматические центры. В передних рогах наиболее выражены медиальная и латеральная группы моторных клеток. Первая иннервирует мышцы туловища и развита хорошо на всём протяжении спинного мозга. Вторая находится в области шейного и поясничного утолщений и иннервирует мышцы конечностей[4].

Мотонейроны обеспечивают эфферентную информацию на скелетные поперечнополосатые мышцы, являются крупными клетками (диаметром — 100—150 мкм). В терминалах аксона имеются синаптические пузырьки с ацетилхолином, на теле нейрона и дендритах — многочисленные синапсы — до 1000 и более аксосоматических терминалов. Мотонейроны объединены в 5 групп двигательных ядер — латеральные (переднее и заднее), медиальные (переднее и заднее), центральная. В ядрах нейроны образуют колонки[4].

В сером веществе спинного мозга много рассеянных пучковых нейронов. Аксоны этих клеток выходят в белое вещество и сразу же делятся на более длинную восходящую и более короткую нисходящую ветви. В совокупности эти волокна образуют собственные, или основные, пучки белого вещества, непосредственно прилегающие к серому веществу. По своему ходу они дают много коллатералей, которые, как и сами ветви, заканчиваются синапсами на двигательных клетках передних рогов 4-5 смежных сегментов спинного мозга[4].

Ядра серого вещества спинного мозга (справа) и пластины Рекседа (слева)
Слои серого вещества по Рекседу[править | править код]

В 1952 году шведский анатом Брор Рексед (англ. Bror Rexed) предложил разделять серое вещество на десять пластин (слоев), различающихся по структуре и функциональной значимости составляющих их элементов. Эта классификация получила широкое признание и распространение в научном мире. Пластины принято обозначать римскими цифрами.

Пластины с I по IV образуют головку дорсального рога, которая является первичной сенсорной областью.

I пластина образована многими мелкими нейронами и крупными веретеновидными клетками, лежащими параллельно самой пластине. В неё входят афференты от болевых рецепторов, а также аксоны нейронов II пластины. Выходящие отростки контрлатерально (то есть, перекрестно — отростки правого заднего рога по левым канатикам и наоборот) несут информацию о болевой и температурной чувствительности в головной мозг по передним и боковым канатикам (спиноталамический тракт).

II и III пластины образованы клетками, перпендикулярными к краям пластин. Соответствуют желатинозной субстанции. Обе афферируются отростками спиноталамического тракта и передают информацию ниже. Участвуют в контроле проведения боли. II пластина также отдает отростки к I пластине.

IV пластина соответствует собственному ядру. Получает информацию от II и III пластин, аксоны замыкают рефлекторные дуги спинного мозга на мотонейронах и участвуют в спиноталамическом тракте.

V и VI пластины образуют шейку заднего рога. Получают афференты от мышц. VI пластина соответствует ядру Кларка. Получает афференты от мышц, сухожилий и связок, нисходящие тракты от головного мозга. Из пластины выходят два спиномозжечковых тракта:

  • тракт Флешига (вариант: Флексига) (лат. tractus spinocerebellaris dorsalis) — выходит ипсилатерально (то есть в канатик своей стороны) в боковой канатик
  • тракт Говерса (лат. tractus spinocerebellaris ventralis) — выходит контрлатерально в боковой канатик

VII пластина занимает значительную часть переднего рога. Почти все нейроны этой пластины вставочные (за исключением эфферентных нейронов лат. Nucleus intermediolateralis). Получает афферентацию от мышц и сухожилий, а также множество нисходящих трактов. Аксоны идут в IX пластину.

VIII пластина расположена в вентро-медиальной части переднего рога, вокруг одной из частей IX пластины. Нейроны её участвуют в проприоспинальных связях, то есть связывают между собой разные сегменты спинного мозга.

Пластина IX не едина в пространстве, её части лежат внутри VII и VIII пластин. Она соответствует моторным ядрам, то есть является первичной моторной областью, и содержит мотонейроны, расположенные соматотопически (то есть представляет собой «карту» тела), например, мотонейроны мышц-сгибателей залегают обычно выше мотонейронов мышц-разгибателей, нейроны, иннервирующие кисть — латеральнее, чем иннервирующие предплечье, и т. д.

X пластина расположена вокруг спинального канала, и отвечает за комиссуральные (между левой и правой частями спинного мозга) и другие проприоспинальные связи.

Белое вещество[править | править код]

Белое вещество окружает серое. Борозды спинного мозга разделяют его на канатики (лат. funiculi): передние, боковые и задние. Канатики представляют собой нервные тракты, связывающие спинной мозг с головным.

Самой широкой и глубокой бороздой является лат. Fissura medianus anterior (передняя срединная щель), разделяющая белое вещество между передними рогами серого вещества. Напротив неё — лат. Sulcus medianus posterior (задняя срединная борозда).

По паре латеральных борозд (лат. Sulcus lateralis posterior & anterior) идут соответственно к задним и передним рогам серого вещества.

Задний канатик разделяют (лат. Sulcus intermedia posterior), образуя два восходящих тракта: ближний к задней срединной борозде лат. Fasciculus gracilis (нежный, или тонкий пучок), и более латеральный лат. Fasciculus cuneatus (клиновидный пучок). Внутренний пучок, тонкий, поднимается с самых нижних отделов спинного мозга, клиновидный же образуется только на уровне грудного отдела.

Спинальные нервы[править | править код]

Схема. Волокна в спинальном нерве (от 8-го шейного до 2—3 поясничного сегментах). Синим цветом обозначены чувствительные волокна, красным — двигательные (соматические), темно-зеленым — преганглионарные симпатические, светло-зеленым — постганглионарные симпатические

Передние и задние корешки сливаются в спиномозговой (спинальный) нерв.

Спинальные нервы содержат четыре функциональных компонента:

  • GSA (general somatic afferent) — получают сенсорные волокна от поверхности тела;
  • GVA (general vegetatic afferent) — получают сенсорные волокна от висцеральных органов;
  • GSE (general somatic efferent) — иннервируют скелетную мускулатуру;
  • GVE (general vegetatic efferent) — иннервируют автономные (вегетативные) ганглии.

Участки кожи, обслуживаемые различными спинномозговыми нервами, называются дерматомами.

Принцип работы сегментарного аппарата спинного мозга — рефлекторные дуги.

Основная схема рефлекторной дуги спинного мозга: информация от рецептора идет по чувствительному нейрону, тот переключается на вставочный нейрон, тот, в свою очередь, на мотонейрон, который несет информацию к эффекторному органу. Для рефлекторной дуги характерен сенсорный вход, непроизвольность, межсегментарность, моторный выход.

Примерами спинномозговых рефлексов могут служить:

  • Сгибательный (флексорный) рефлекс — рефлекс защитного типа, направленный на удаление повреждающего раздражителя (отдергивание руки от горячего).
  • Рефлекс на растяжения (проприоцептивный) — предотвращающий чрезмерное растяжение мышцы. Особенностью этого рефлекса является то, что рефлекторная дуга содержит минимум элементов — мышечные веретена генерируют импульсы, которые проходят в спинной мозг и вызывают моносинаптическое возбуждение в α-мотонейронах той же мышцы.
  • Сухожильный, разнообразные тонические и ритмические рефлексы.
  • У четвероногих животных можно наблюдать экстензорный толчок.

Причинами ушибов и сотрясений спинного мозга могут быть переломы и смещения позвонков при стремительном падении, при тяжёлых ударах по позвоночнику, огнестрельные ранения в область спинного мозга.

Патогенез. При контузиях и ранениях, ущемлениях и сдавливании спинного мозга, а также при смещении или повреждении позвонков прекращается проводимость рефлекторных импульсов к центру и периферии.[5]

Впервые спинной мозг появляется уже у бесчерепных (ланцетник). Спинной мозг изменяется в связи с изменением сложности передвижения животных. У наземных животных с четырьмя конечностями образуются шейное и поясничное утолщение, у змей спинной мозг не имеет утолщений. У птиц за счет расширения седалищного нерва формируется полость — ромбовидный, или люмбосакральный синус (лат. Sinus lumbosacralis). Его полость заполнена гликогеновой массой. У костистых рыб спинной мозг переходит в эндокринный орган урофиз.

Разнообразие внешних форм спинного мозга определяется функциональной нагрузкой на эту часть нервной системы. Он может быть как длинным однородным (у змеи) так и не длиннее головного мозга (у рыбы-луны). Количество сегментов тоже может различаться и доходить до 500 у некоторых змей. Распределения серого вещества меняется от группы к группе. Для миног и миксин характерно слабо дифференцированное серое вещество спинного мозга. Но у большинства позвоночных серое вещество расположено в виде классической «бабочки».

К спинному мозгу подходят ветви от позвоночной артерии (из подключичной артерии), глубокой шейной артерии (из реберно-шейного ствола), а также от задних межрёберных поясничных и латеральных крестцовых артерий. К нему прилежат три длинных продольных артериальных сосуда: передняя и две задние спинномозговые артерии. Передняя спинномозговая артерия (непарная) примыкает к передней продольной щели спинного мозга. Она образуется из двух аналогичных по названию артерий (ветвей правой и левой позвоночных артерий) в верхних отделах спинного мозга. Задняя спинномозговая артерия является парной. Каждая из артерий прилежит к задней поверхности спинного мозга возле вхождения в мозг задних корешков спинномозговых нервов. Эти три артерии продолжаются до нижнего конца спинного мозга. Передняя и две задние спинномозговые артерии соединяются между собой на поверхности спинного мозга многочисленными анастомозами и с ветвями межреберных, поясничных и латеральных крестцовых артерий, проникающих в позвоночный канал через межпозвоночные отверстия и посылающих в вещество мозга тонкие ветви.

  1. Богородинский Д.К., Скоромец А.А.; Бабиченко Е.И., Вирозуб И.Д., Костюк И.Г., Лясс Ф.М., Минакова Е.И., Моргунов В.А., Первушин В.Ю., Ростоцкая В.Ю., Тисеен Т.П., Шифрин С.С. Спинной мозг // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1985. — Т. 24. Сосудистый шов - Тениоз. — 544 с. — 150 800 экз.
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Синельников, Синельников, 1996, с. 18—23.
  3. 1 2 3 4 5 6 7 Синельников, Синельников, 1996, с. 24.
  4. 1 2 3 4 5 6 7 8 9 10 11 Афанасьев, Юрина, 2001, с. 304—310.
  5. Г.В.Домрачев и др. Патология и терапия внутренних незаразных болезней сельскохозяйственных животных. — М., 1960. — 504 с.
  • Синельников Р. Д., Синельников Я. Р.  Атлас анатомии человека в 4 томах. — М.: Медицина, 1996. — Т. 4. — 320 с. — ISBN 5-225-02723-7..
  • Афанасьев Ю. И., Юрина Н. А.  Гистология. — М.: Медицина, 2001. — 744 с. — ISBN 5-225-04523-5..

Кора больших полушарий — Википедия

Нейроны коры больших полушарий головного мозга

Кора больших полушарий головного мозга или кора головного мозга (лат. cortex cerebri) — структура головного мозга, слой серого вещества толщиной 1,3—4,5 мм[1], расположенный по периферии полушарий большого мозга и покрывающий их. Наибольшая толщина отмечается в верхних участках предцентральной, постцентральной извилин и парацентральной дольки[2].

Кора головного мозга играет очень важную роль в осуществлении высшей нервной (психической) деятельности[2].

Кора головного мозга человека составляет более 80 % массы мозга[3].

У человека кора составляет в среднем 44 % от объёма всего полушария в целом[2]. Площадь поверхности коры одного полушария у взрослого человека 2400 см² (в основном от 2000 до 2800 см²)[4][2]. На поверхностные части приходится 1/3, на залегающие в глубине между извилинами — 2/3 всей площади коры[1].

Величина и форма борозд подвержены значительным индивидуальным колебаниям — не только мозг различных людей, но даже полушария одной и той же особи по рисунку борозд не вполне похожи[1].

Всю кору полушарий принято разделять на 4 типа: древняя (архикортекс), старая (палеокортекс), новая (неокортекс) и промежуточная кора (состоящая из промежуточной древней и промежуточной старой коры). Поверхность неокортекса у человека занимает 95,6 %, архикортекса — 2,2 %, палеокортекса — 0,6 %, промежуточной — 1,6 %[2].

Доли полушарий большого мозга

Кора большого мозга покрывает поверхность полушарий и образует большое количество различных по глубине и протяжённости борозд (лат. sulci cerebri). Между бороздами расположены различной величины извилины большого мозга (лат. gyri cerebri) [5].

В каждом полушарии различают следующие поверхности:

  1. выпуклую верхнелатеральную поверхность (лат. facies superolateralis), примыкающую к внутренней поверхности костей свода черепа
  2. нижнюю поверхность (лат. facies inferior), передние и средние отделы которой располагаются на внутренней поверхности основания черепа, в области передней и средней черепных ямок, а задние — на намёте мозжечка
  3. медиальную поверхность (лат. facies medialis), направленную к продольной щели мозга [5].

Эти три поверхности каждого полушария, переходя одна в другую, образуют три края. Верхний край (лат. margo superior) разделяет верхнелатеральную и медиальную поверхности. Нижнелатеральный край (лат. margo inferolateralis) отделяет верхнелатеральную поверхность от нижней. Нижнемедиальный край (лат. margo inferomedialis) располагается между нижней и медиальной поверхностями [5].

В каждом полушарии различают наиболее выступающие места: спереди — лобный полюс (лат. polus frontalis), сзади — затылочный (лат. polus occipitalis), и сбоку — височный (лат. polus temporalis) [5].

Полушарие разделено на пять долей. Четыре из них примыкают к соответствующим костям свода черепа:

  1. лобная доля (лат. lobus frontalis)
  2. теменная доля (лат. lobus parietalis)
  3. затылочная доля (лат. lobus occipitalis)
  4. височная доля (лат. lobus temporalis)
  5. островковая доля (лат. lobus insularis) (островок) (лат. insula) — заложена в глубине латеральной ямки большого мозга (лат. fossa lateralis cerebri), отделяющей лобную долю от височной [5].

В книге Годфруа Ж. «Что такое психология» выделяется шестая доля, мозолистого тела, расположенная на внутренней стороне полушария под мозолистым телом. [6]

Лобная доля[править | править код]

Лобную долю от теменной отделяет глубокая центральная (роландова) борозда (лат. sulcus centralis). Она начинается на медиальной поверхности полушария, переходит на его верхнелатеральную поверхность, идёт по ней немного косо, сзади наперёд, и обычно не доходит до латеральной (боковой или сильвиевой) борозды мозга [5].

Приблизительно параллельно центральной борозде располагается предцентральная борозда (лат. sulcus precentralis), которая не доходит до верхнего края полушария. Предцентральная борозда окаймляет спереди прецентральную извилину (лат. gyrus precentralis) [5].

Верхняя и нижняя лобные борозды (лат. sulci frontales superior et inferior) направляются от предцентральной борозды вперёд. Они делят лобную долю на:

  • верхнюю лобную извилину (лат. gyrus frontalis superior), которая расположена выше верхней лобной борозды и переходит на медиальную поверхность полушария
  • среднюю лобную извилину (лат. gyrus frontalis medius), которую ограничивают верхняя и нижняя лобные борозды. Орбитальный (передний) сегмент этой извилины переходит на нижнюю поверхность лобной доли
  • нижнюю лобную извилину (лат. gyrus frontalis inferior), которая лежит между нижней лобной бороздой и латеральной бороздой мозга и ветвями латеральной борозды делится на ряд частей [5]

Латеральная борозда (лат. sulcus lateralis) — одна из наиболее глубоких борозд головного мозга. Она отделяет височную долю от лобной и теменной. Залегает латеральная борозда на верхнелатеральной поверхности каждого полушария и идёт сверху вниз и кпереди. В глубине этой борозды располагается углубление — латеральная ямка большого мозга (лат. fossa lateralis cerebri), дном которой является наружная поверхность островка[5].

От латеральной борозды к верху отходят мелкие борозды, называемые ветвями. Наиболее постоянными из них являются восходящая (лат. ramus ascendens) и передняя (лат. ramus anterior) ветви. Верхнезадний отдел борозды называется задней ветвью (лат. ramus posterior)[5].

Нижняя лобная извилина, в пределах которой проходят восходящая и передняя ветви, разделяется ими на три части:

  • заднюю — оперкулярную (покрышечную) часть (лат. pars opercularis), ограниченную спереди восходящей ветвью;
  • среднюю — треугольную часть (лат. pars triangularis), лежащую между восходящей и передней ветвями;
  • переднюю — орбитальную (глазничную) часть (лат. pars orbitalis), расположенные между передней ветвью и нижнелатеральным краем лобной доли[5].
Теменная доля[править | править код]
Теменная доля

Залегает сзади от центральной борозды, которая отделяет её от лобной. От височной отграничена латеральной бороздой мозга, от затылочной — частью теменно-затылочной борозды (лат. sulcus parietooccipitalis)[5].

Параллельно прецентральной извилине проходит постцентральная (лат. gyrus postcentralis). От неё сзади, почти параллельно продольной щели большого мозга, идёт внутритеменная борозда (лат. sulcus intraparietalis), делящая задневерхние отделы теменные отделы теменной доли на две извилины: верхнюю (лат. lobulus parietalis superior) и нижнюю (лат. lobulus parietalis inferior) теменные дольки. В нижней теменной дольке различают две сравнительно небольшие извилины: надкраевую (лат. gyrus supramarginalis), лежащую впереди и замыкающую задние отделы латеральной борозды, и расположенную кзади от предыдущей угловую (лат. gyrus angularis), которая замыкает верхнюю височную борозду[5].

Между восходящей и задней ветвями латеральной борозды мозга расположен участок коры, обозначаемый как лобно-теменная покрышка (лат. operculum frontoparietalis). В неё входят задняя часть нижней лобной извилины, нижние отделы предцентральной и постцентральной извилин, а также нижний отдел передней части теменной доли[5].

Затылочная доля[править | править код]
Височная доля[править | править код]
Височная доля

Имеет наиболее выраженные границы. В ней различают выпуклую латеральную поверхность и вогнутую нижнюю. Тупой полюс височной доли обращён вперёд и несколько вниз. Латеральная борозда большого мозга резко отграничивает височную долю от лобной[5].

Две борозды, расположенные на верхнелатеральной поверхности: верхняя (лат. sulcus temporalis superior) и нижняя (лат. sulcus temporalis inferior) височные борозды, следуя почти параллельно латеральной борозде мозга, разделяют долю на три височные извилины: верхнюю, среднюю и нижнюю (лат. gyri temporales superior, medius et inferior)[5].

Те участки височной доли, которые направлены в сторону латеральной борозды мозга изрезаны короткими поперечными височными бороздами (лат. sulci temporales transversi). Между этими бороздами залегают 2-3 короткие поперечные височные извилины, связанные с извилинами височной доли (лат. gyri temporales transversi) и островком[5].

Островковая доля (островок)[править | править код]

Залегает на дне латеральной ямки большого мозга (лат. fossa lateralis cerebri).

Она представляет собой трёхстороннюю пирамиду, обращённую своей вершиной — полюсом островка — кпереди и кнаружи, в сторону латеральной борозды. С периферии островок окружён лобной, теменной и височной долями, участвующими в образовании стенок латеральной борозды мозга[5].

Основание островка с трёх сторон окружено круговой бороздой островка (лат. sulcus circularis insulae).

Его поверхность прорезана глубокой центральной бороздой островка (лат. sulcus centralis insulae). Эта борозда разделяет островок на переднюю и заднюю части[5].

На поверхности различают большое количество мелких извилин островка (лат. gyri insulae). Большая передняя часть состоит из нескольких коротких извилин островка (лат. gyri breves insulae), задняя — одной длинной извилины (лат. gyrus longus insulae)[5].

Борозды и извилины медиальной поверхности[править | править код]

На медиальную поверхность полушария выходят лобная, теменная и затылочная доли.

Поясная извилина (лат. gyrus cinguli) начинается подмозолистым полем (лат. area subcallosa), огибает мозолистое тело и при посредстве узкой полоски — перешейка поясной извилины (лат. isthmus gyri cinguli) переходит в парагиппокампальную извилину на нижней поверхности полушария[5].

Борозда мозолистого тела (лат. g sulcus corporis callosi) отделяет поясную извилину от мозолистого тела и на нижней поверхности полушария продолжается в борозду гиппокампа[5].

Поясная извилина ограничена сверху поясной бороздой (лат. sulcus cinguli). В последней различают выпуклую по направлению к лобному полюсу переднюю часть и заднюю часть, которая, следуя вдоль поясной извилины и не доходя до её заднего отдела, поднимается к верхнему краю полушария большого мозга. Задний конец борозды лежит позади верхнего конца центральной борозды. Между предцентральной бороздой, окончание которой иногда хорошо видно у верхнего края медиальной поверхности полушария, и концом поясной борозды, располагается парацентральная долька (лат. lobulus paracentralis)[5].

Выше поясной извилины, Спереди от подмозолистого поля, начинается медиальная лобная извилина (лат. gyrus frontalis medialis). Она тянется до парацентральной дольки и является нижней частью верхней лобной извилины.

Сзади от поясной борозды лежит небольшая четырёхугольная долька — предклинье (лат. precuneus). Её задней границей является глубокая теменно-затылочная борозда (лат. sulcus parietooccipitalis), нижней — подтеменная борозда (лат. sulcus subparietalis), отделяющая предклинье от заднего отдела поясной извилины[5].

Сзади и ниже предклинья залегает треугольная долька — клин (лат. cuneus). Выпуклая наружная поверхность клина участвует в образовании затылочного полюса. Направленная вниз и вперёд вершина клина почти доходит до заднего отдела поясной извилины. Задненижней границей клина является очень глубокая шпорная борозда (лат. sulcus calcarinus), передней — теменно-затылочная борозда[5].

Борозды и извилины нижней поверхности[править | править код]

На нижней поверхности лобной доли располагается обонятельная борозда (лат. sulcus olfactorius). Кнутри от неё, между нею и нижнемедиальным краем полушария, лежит прямая извилина (лат. gyrus rectus). Её задний отдел доходит до переднего продырявленного вещества (лат. substantia perforata anterior). Кнаружи от борозды располагается остальная часть нижней поверхности лобной доли, изрезанная короткими глазничными бороздами (лат. sulci orbitales), на ряд небольших глазничных извилин (лат. gyri orbitales)[5].

Нижняя поверхность височной доли глубокой бороздой гиппокампа (лат. sulcus hippocampi) отделена от ножек мозга. В глубине борозды залегает узкая зубчатая извилина (лат. gyrus dentatus). Передний её конец переходит в крючок, а задний — в ленточную извилину (лат. gyrus fasciolaris) залегающую под валиком мозолистого тела. Латерально от борозды находится парагиппокампальная извилина (лат. gyrus parahippocampalis). Впереди эта извилина имеет утолщение в виде крючка (лат. uncus), а кзади продолжается в язычную извилину (лат. gyrus lingualis). Парагиппокампальную и язычную извилины с латеральной стороны ограничивает коллатеральная борозда (лат. sulcus collateralis), переходящая спереди в носовую борозду (лат. sulcus rhinalis). Остальную часть нижней поверхности височной доли занимают медиальная и латеральная затылочно-височные извилины (лат. gyri occipitotemporales medialis et lateralis), разделённые затылочно-височной бороздой (лат. sulcus occipitotemporalis). Латеральная затылочно-височная извилина нижнелатеральным краем полушария отделяется от нижней височной извилины[5].

Строение[править | править код]

Цитоархитектоника (расположение клеток)

  • молекулярный слой
  • наружный зернистый слой
  • слой пирамидальных нейронов
  • внутренний зернистый слой
  • ганглионарный слой (внутренний пирамидный слой;клетки Беца)
  • слой полиморфных клеток

Миелоархитектоника (расположение волокон)

  • полоска молекулярного слоя
  • полоска наружного зернистого слоя
  • полоска внутреннего зернистого слоя
  • полоска ганглионарного слоя [7].

Кора полушарий головного мозга представлена слоем серого вещества толщиной в среднем около 3 мм (1,3 — 4,5 мм). Наиболее сильно развита она в передней центральной извилине. Обилие борозд и извилин значительно увеличивает площадь серого вещества головного мозга. В коре содержится около 10-14 млрд нервных клеток. Различные её участки, отличающиеся друг от друга некоторыми особенностями расположения и строения клеток (цитоархитектоника), расположения волокон (миелоархитектоника) и функциональным значением, называются полями. Они представляют собой места высшего анализа и синтеза нервных импульсов. Резко очерченные границы между ними отсутствуют. Для коры характерно расположение клеток и волокон слоями [8].

Типичным для новой коры (лат. neocortex) является наличие шести слоёв, различающихся между собой главным образом по форме входящих в них нервных клеток. При этом на медиальной и нижней поверхностях полушарий сохранились участки старой (лат. archipallium) и древней (лат. paleopallium) коры, имеющей 2-слойное и 3-слойное строение[1]. Также выделяется промежуточная кора (лат. mesopallium) располагающаяся между старой и новой, а также древней и новой корой[5]. Древняя кора представлена гиппокампом, а старая — участком коры возле обонятельной луковицы на нижней поверхности лобной доли[1].

Цитоархитектоника[править | править код]

Мультиполярные нейроны коры головного мозга весьма разнообразны по форме. Среди них можно выделить:

  • пирамидные
  • звёздчатые
  • веретенообразные
  • паукообразные
  • горизонтальные

Пирамидные нейроны составляют основную и наиболее специфическую для коры головного мозга форму (80—90 % всех нейронов). Размеры их варьируют от 10 до 140 мкм. Они имеют вытянутое треугольное тело, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало аксоны, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других — длинные, поступающие в белое вещество [8].

Пирамидные клетки различных слоёв коры отличаются размерами и имеют разное функциональное значение. Мелкие клетки представляют собой вставочные нейроны, аксоны которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны). Эти клетки встречаются в разных количествах во всех слоях коры. Особенно богата ими кора головного мозга человека. Аксоны крупных пирамидных нейронов принимают участие в образовании пирамидных путей, проецирующих импульсы в соответствующие центры мозгового ствола и спинного мозга [8].

Нейроны коры расположены нерезко отграниченными слоями. Каждый слой характеризуется преобладанием какого-либо одного вида клеток. В двигательной зоне коры различают 6 основных слоёв:

  1. Молекулярный (лат. lamina molecularis)
  2. Наружный зернистый (лат. lamina granularis externa)
  3. Пирамидальных нейронов (лат. lamina pyramidalis)
  4. Внутренний зернистый (лат. lamina granularis interna)
  5. Ганглионарный (слой клеток Беца) (лат. lamina ganglionaris)
  6. Слой мультиформных (полиморфных) клеток (лат. lamina multiformis) [8]

Кора полушарий головного мозга также содержит мощный нейроглиальный аппарат, выполняющий трофическую, защитную, опорную и разграничительную функции [8].

На медиальной и нижней поверхности полушарий сохранились участки старой, древней коры, которые имеют двухслойное и трехслойное строение.

Молекулярный слой[править | править код]

Молекулярный слой коры содержит небольшое количество мелких ассоциативных клеток веретеновидной формы. Их аксоны проходят параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. Основная масса волокон этого сплетения представлена ветвлениями дендритов нейронов нижележащих слоёв [8].

Наружный зернистый слой[править | править код]

Наружный зернистый слой образован мелкими нейронами диаметром около 10 мкм, имеющими округлую, угловатую и пирамидальную форму, и звёздчатыми нейронами. Дендриты этих клеток поднимаются в молекулярный слой. Аксоны или уходят в белое вещество, или, образуя дуги, также поступают в тангенциальное сплетение волокон молекулярного слоя [8].

Слой пирамидальных нейронов[править | править код]

Является самым широким по сравнению с другими слоями коры головного мозга. Он особенно хорошо развит в прецентральной извилине. Величина пирамидных клеток последовательно увеличивается в пределах 10-40 мкм от наружной зоны этого слоя к внутренней. От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, берущие начало от боковых поверхностей пирамиды и её основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. Аксон пирамидной клетки всегда отходит от её основания. В мелких клетках он остаётся в пределах коры; аксон же, принадлежащий крупной пирамиде, обычно формирует миелиновое ассоцативное или комиссуральное волокно, идущее в белое вещество [8].

Внутренний зернистый слой[править | править код]

В некоторых полях коры развит очень сильно (например, в зрительной зоне коры). Однако в других участках он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими звёздчатыми нейронами. В его состав входит большое количество горизонтальных волокон [8].

Ганглионарный слой (Внутренний пирамидный слой;Клетки Беца)[править | править код]

Образован крупными пирамидными клетками, причём область прецентральной извилины содержит гигантские клетки, описанные впервые российским анатомом В. А. Бецем в 1874 году (клетки Беца). Они достигают в высоту 120 и в ширину 80 мкм. В отличие от других пирамидных клеток коры гигантские клетки Беца характеризуются наличием крупных глыбок хроматофильного вещества. Их аксоны образуют главную часть кортико-спинальных и кортико-нуклеарных путей и оканчиваются на мотонейронах мозгового ствола и спинного мозга [8].

Перед выходом из коры от пирамидного пути отходит множество коллатералей. Аксоны от гигантских клеток Беца дают коллатерали, посылающие тормозящие импульсы в саму кору. Также коллатерали волокон пирамидного пути идут в полосатое тело, красное ядро, ретикулярную формацию, ядра моста и нижних олив. Ядра моста и нижних олив передают сигнал в мозжечок. Таким образом, когда пирамидный путь передаёт сигнал, вызывающий целенаправленное движение, в спинной мозг, одновременно сигналы получают базальные ганглии, ствол мозга и мозжечок. Помимо коллатералей пирамидных путей, существуют волокна, которые идут непосредственно от коры к промежуточным ядрам: хвостатому телу, красному ядру, ядрам ретикулярной формации ствола мозга и др.[8]

Слой мультиморфных клеток[править | править код]

Образован нейронами различной, преимущественно веретенообразной формы. Внешняя зона этого слоя содержит более крупные клетки. Нейроны внутренней зоны мельче и лежат на большом расстоянии друг от друга. Аксоны клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры [8].

Миелоархитектоника[править | править код]

Среди нервных волокон коры полушарий головного мозга можно выделить:

  • ассоциативные волокна — связывают отдельные участки коры одного полушария
  • комиссуральные волокна — соединяют кору двух полушарий
  • проекционные волокна — соединяют кору с ядрами низших отделов центральной нервной системы. Афферентные проекционные волокна заканчиваются в слое пирамидальных нейронов[8]

Кроме тангенциального сплетения молекулярного слоя, на уровне внутреннего зернистого и ганглионарного слоёв расположены два тангенциальных слоя миелиновых нервных волокон и коллатералей аксонов клеток коры. Вступая в синаптические связи с нейронами коры, горизонтальные волокна обеспечивают широкое распространение в ней нервного импульса [8].

Модуль[править | править код]

I, II, III, IV, V, VI — слои коры
Афферентные волокна
1. кортико-кортикальное волокно
2. таламо-кортикальное волокно
2а. зона распространения специфических таламо-кортикальных волокон
3. пирамидные нейроны
3а. заторможенные пирамидные нейроны
4. тормозные нейроны и их синапсы
4а. клетки с аксональной кисточкой
4б. малые корзинчатые клетки
4в. большие корзинчатые клетки
4г. аксоаксональные нейроны
4д. клетки с двойным букетом дендритов (тормозящие тормозные нейроны)
5. шипиковые звёздчатые клетки, возбуждающие пирамидные нейроны непосредственно и путём стимуляции клеток с двойным букетом дендритов

Исследуя кору больших полушарий головного мозга Я. Сентаготаи и представители его школы установили, что её структурно-функциональной единицей является модуль — вертикальная колонка диаметром около 300 мкм. Модуль организован вокруг кортико-кортикального волокна, представляющего собой аксон пирамидной клетки III слоя (слоя пирамидальных клеток) того же полушария (ассоциативное волокно), либо от пирамидальных клеток противоположного (комиссуральное). В модуль входят два таламо-кортикальных волокна — специфических афферентных волокна, оканчивающихся в IV слое коры на шипиковых звёздчатых нейронах и отходящих от основания (базальных) дендритах пирамидальных нейронов. Каждый модуль, по мнению Сентаготаи разделяется на два микромодуля диаметром менее 100 мкм. Всего в неокортексе человека примерно 3 млн модулей. Аксоны пирамидальных нейронов модуля проецируются на три модуля той же стороны и через мозолистое тело посредством комиссуральных волокон на два модуля противоположного полушария. В отличие от специфических афферентных волокон, оканчивающихся в IV слое коры, кортико-кортикальные волокна образуют окончания во всех слоях коры, и, достигая I слоя, дают горизонтальные ветви, выходящие далеко за пределы модуля[8].

Помимо специфических (таламо-кортикальных) афферентных волокон, на выходные пирамидальные нейроны возбуждающее влияние оказывают шипиковые звёздчатые нейроны. Различают два типа шипиковых клеток:

  1. шипиковые звёздчатые нейроны фокального типа, образующие множественные синапсы на отходящих от верхушки (апикальных) дендритах пирамидального нейрона
  2. шипиковые звёздчатые нейроны диффузного типа, аксоны которых широко ветвятся в IV слое и возбуждают базальные дендриты пирамидальных нейронов. Коллатерали аксонов пирамидных нейронов вызывают диффузное возбуждение соседних пирамид [8].

Тормозная система модуля представлена следующими типами нейронов:

  1. клетки с аксональной кисточкой образуют в I слое множественные тормозные синапсы на горизонтальных ветвях кортико-кортикальных волокон
  2. корзинчатые нейроны — тормозные нейроны, образующие тормозящие синапсы на телах практически всех пирамидных клеток. Они подразделяются на малые корзинчатые нейроны, оказывающие тормозящее влияние на пирамидные нейроны II, III и V слоёв модуля, и большие корзинчатые клетки, располагающиеся на периферии модуля и имеющие тенденцию подавлять пирамидные нейроны соседних модулей
  3. аксоаксональные нейроны, тормозящие пирамидные нейроны II и III слоёв. Каждая такая клетка образует синапсы на начальных участках аксонов сотен нейронов II и III слоёв. Они тормозят, таким образом, кортико-кортикальные волокна, но не проекционные волокна нейронов V слоя[8].

Система угнетения тормозных нейронов:

  1. клетки с двойным букетом дендритов располагаются во II и III слоях и, угнетая тормозные нейроны, производят вторичное возбуждающее действие на пирамидные нейроны. Ветви их аксонов направлены вверх и вниз и распространяются в узкой колонке (50 мкм). Таким образом, клетка с двойным букетом дендритов растормаживает пирамидные нейроны в микромодуле (в колонке диаметром 50-100 мкм)[8].

Мощный возбуждающий эффект фокальных шипиковых звёздчатых клеток объясняется тем, что они одновременно возбуждают пирамидные нейроны и клетку с двойным букетом дендритов. Таким образом, первые три тормозных нейрона тормозят пирамидные клетки, а клетки с двойным букетом дендритов возбуждают их, угнетая тормозные нейроны[8].

Однако, также существуют критические и альтернативные концепции, ставящие под сомнение модульную организацию коры больших полушарий и мозжечка. Безусловно, влияние на эти воззрения оказало предсказание в 1985 г. и в дальнейшем открытие в 1992 г. диффузного объёмного нейротрансмиттинга[9].

Резюме[править | править код]

Межнейрональные взаимосвязи нейронов коры больших полушарий головного мозга можно представить следующим образом: входящая (афферентная) информация поступает из таламуса по таламо-кортикальным волокнам, которые заканчиваются на клетках IV (внутреннего зернистого) слоя. Его звёздчатые нейроны оказывают возбуждающее воздействие на пирамидные клетки III (пирамидальных нейронов) и V (ганглионарного) слоёв, а также на клетки с двойным букетом дендритов, которые блокируют тормозные нейроны. Клетки III слоя образуют волокна (ассоциативные и комиссуральные), которые связывают между собой различные отделы коры. Клетки V и VI (мультиморфных клеток) слоёв формируют проекционные волокна, которые уходят в белое вещество и несут информацию другим отделам центральной нервной системы. Во всех слоях коры находятся тормозные нейроны, играющие роль фильтра путём блокирования пирамидных нейронов [8].

Кора различных отделов характеризуется преимущественным развитием тех или иных её слоёв. Так, в двигательных центрах коры, например в передней центральной извилине, сильно развиты III, V и VI и плохо выражены II и IV слои. Это так называемый агранулярный тип коры. Из этих областей берут начало нисходящие проводящие пути центральной нервной системы. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамидные клетки , тогда как зернистые слои (II и IV) достигают своего максимального развития. Это гранулярный тип коры [8].

Цитоархитектонические поля Бродмана[править | править код]

Цитоархитектонические поля Бродмана – отделы коры больших полушарий головного мозга, отличающиеся по своей цитоархитектонике (строению на клеточном уровне). Выделяется 52 цитоархитектонических поля Бродмана.

В 1909 году немецкий невролог Корбиниан Бродманн опубликовал [10] карты цитоархитектонических полей коры больших полушарий головного мозга. Бродман впервые создал карты коры. Впоследствии О. Фогт и Ц. Фогт (1919-1920 гг.) с учётом волоконного строения описали в коре головного мозга 150 миелоархитектонических участков. В Институте мозга АМН СССР И. Н. Филипповым и С. А. Саркисовым были созданы карты коры головного мозга, включающие 47 цитоархитектонических полей[11].

Несмотря на критику [12], поля Бродмана являются самыми известными и наиболее часто цитируемыми при описании нейрональной организации коры головного мозга и её функций.

Функционирование коры головного мозга, как и всего организма в целом, осуществляется в двух основных, четко отличающихся друг от друга состояниях: бодрствования и сна.

Реализация функций психических процессов, вовлекает весь мозг, и обеспечивается взаимосвязанной, скоординированной деятельностью многих участков коры головного мозга. Тем не менее, существуют области, в которых реализация конкретных функций в значительной степени локализуется. Поражение, недоразвитость, либо низкая активность таких участков вызывает нарушения выполнения локализованных в них функций. Так по функциям приёма сенсорных сигналов, формировании и управления движениями и обработки информации, кора головного мозга разделяется на три зоны: сенсорную, моторную и ассоциативную. При этом сенсорная зона обеспечивает приём и обработку сигналов органов чувств, моторная отвечает за произвольные движения. Функция ассоциативной зоны - связывать между собой активность сенсорных и моторных зон. Ассоциативная зона прогнозирует, получает и перерабатывает информацию из сенсорной зоны и, через моторную, инициирует и формирует целенаправленное осмысленное поведение.

В настоящее время основным инструментом для определения нейронных сетей, участков головного мозга, активизирующихся при определенных условиях, является позитронно-эмиссионная томография. В ходе таких исследований определяются нейронные сети, вовлекающиеся в реализацию конкретных функций. В частности, так была выявлена сеть пассивного режима работы мозга, активная в состоянии свободной, не целенаправленной умственной деятельностью, когда человек бездействует, отдыхает, грезит наяву или погружён в себя, а не связан с выполнением какой-либо задачи внешнего мира.

Сенсорная зона[править | править код]

Сенсорная кора (зона) - это часть коры больших полушарий, которая получает и обрабатывает информацию от органов чувств. Области коры головного мозга, которые получают сенсорные сигналы от таламуса, называются первичными сенсорными зонами. Сигналы от органов зрения, слуха и осязания поступают в первичную зрительную, слуховую и соматосенсорную кору, соответственно. Как правило, два полушария получают информацию от противоположной (контралатеральной) стороны тела. Например, правая первичная соматосенсорная кора получает информацию от левых конечностей, а правая зрительная кора получает информацию от рецептивного поля левого зрительного нерва. Топография сенсорных зон коры отражает топографию рецептивного поля соответствующего органа чувств и называется картой. Например, соседние точки в первичной зрительной коре соответствуют соседним точкам сетчатки. Эта карта называется зрительной картой. Таким же образом, существует звуковая карта в первичной слуховой коре и соматосенсорная карта в первичной сенсорной коре. Последняя топографическая карта тела на задней центральной извилине была проиллюстрирована как искаженное изображение человека, соматосенсорного гомункулуса, где размер различных частей тела отражает относительную плотность их иннервации. Областям с большим количеством сенсорной иннервации, таким, как кончики пальцев и губы, отвечают большие области коры для обработки более тонких ощущений.

Действия вопреки страху, аффективное, эмоционально насыщенное поведение сопровождаются активацией так называемой подколенной области передней части поясной извилины головного мозга (subgenual anterior cingulate cortex — sgACC). Чем больше страх, тем сильнее активизируется эта область мозга. При этом одновременно подавляется активность височных долей головного мозга[13].

В июле 2016 на сайте журнала Nature была опубликована информация о карте коры головного мозга, составленной в результате исследований, проведенных Дэвидом Ван Эссеном (David Van Essen) и его коллегами из Медицинской школы Университета Дж. Вашингтона. Использование алгоритмов машинного обучения позволило идентифицировать 180 структурных участков коры головного мозга, вовлеченных в выполнение различных функций, занимающих 96.6% площади коры, включая 97 прежде неизвестных. В качестве исходных данных использовались изображения мультимодальной магнитно-резонансной томографии головного мозга 210 здоровых подопытных обоих полов, выполнявших простые задания, полученные в ходе реализации проекта по установлению полной «карты» структурных взаимосвязей мозга «Коннектом человека» (Human Connectome Project, HCP)[14][15].

Обнаружено, что центры конфликта находятся в передней поясной коре, неприятия в островковой доле[16].

Усвоение и понимание письменной и устной речи осуществляется частью коры головного мозга, размещённой в заднем отделе верхней височной извилины доминантного полушария, называемой областью Вернике.

Моторная организация речи, преимущественно связанная с фонологической и синтаксической кодификациями, обеспечивается работой центра Брока, участка коры, находящегося в задненижней части третьей лобной извилины левого полушария (у правшей).

Количественные значения активируют участки, расположенные в лобных и задних отделах теменных долей, головного мозга. Одним из ключевых мест является внутритеменная борозда, где представлен семантический смысл чисел.[17] У людей, страдающих дискалькулией - неспособностью к изучению арифметики, данный участок мозга меньше, чем у здоровых людей, и недостаточно активен. В состав сетей, связанных с решением математических задач, входит часть центра Брока.

  1. 1 2 3 4 5 Привес М. Г., Лысенков Н. К., Бушкович В. И. Анатомия человека. — 11-е изд.. — СПб.: Гиппократ, 1998. — С. 525-530. — 704 с. — 5 000 экз. — ISBN 5-8232-0192-3.
  2. 1 2 3 4 5 Сапин М. Р. Анатомия человека: в 2-х т. — М.: Просвещение, 1995. — ISBN 5-09-004385-X.
  3. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. (англ.) // Frontiers In Human Neuroscience. — 2009. — Vol. 3. — P. 31—31. — doi:10.3389/neuro.09.031.2009. — PMID 19915731. [исправить]
  4. Toro, Roberto; Perron, Michel; Pike, Bruce; Richer, Louis; Veillette, Suzanne; Pausova, Zdenka; Paus, Tomáš. Brain Size and Folding of the Human Cerebral Cortex (англ.) // Cerebral Cortex : journal. — 2008. — 1 October (vol. 18, no. 10). — P. 2352—2357. — ISSN 1047-3211. — doi:10.1093/cercor/bhm261. — PMID 18267953.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Синельников Р. Д., Синельников Я. Р. Атлас анатомии человека. — 2-е изд.. — М.: Медицина, 1996. — Т. 4. — С. 29-37. — 320 с. — 10 000 экз. — ISBN 5-225-02723-7..
  6. ↑ Годфруа Ж. Что такое психология: В 2-х т. Т.2: Пер. с франц.-М.: Мир, 376 с., с.253. ISBN 5-03-001902-2
  7. Фениш Х. Карманный атлас анатомии человека. — Минск: Вышэйшая школа, 1996. — С. 316-317. — 464 с. — 20 000 экз. — ISBN 985-06-0114-0.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Смотрите также

Описание: